首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
Post-translational modifications of core histone proteins play a key role in chromatin structure and function. Here, we study histone post-translational modifications during reentry of protoplasts derived from tobacco mesophyll cells into the cell cycle and evaluate their significance for progression through mitosis. Methylation of histone H3 at lysine residues 4 and 9 persisted in chromosomes during all phases of the cell cycle. However, acetylation of H4 and H3 was dramatically reduced during mitosis in a stage-specific manner; while deacetylation of histone H4 commenced at prophase and persisted up to telophase, histone H3 remained acetylated up to metaphase but was deacetylated at anaphase and telophase. Phosphorylation of histone H3 at serine 10 was initiated at prophase, concomitantly with deacetylation of histone H4, and persisted up to telophase. Preventing histone deacetylation by the histone deacetylase inhibitor trichostatin A (TSA) led to accumulation of protoplasts at metaphase-anaphase, and reduced S10 phosphorylation during anaphase and telophase; in cultured tobacco cells, TSA significantly reduced the frequency of mitotic figures. Our results indicate that deacetylation of histone H4 and H3 in tobacco protoplasts occurs during mitosis in a phase-specific manner, and is important for progression through mitosis.  相似文献   

15.
16.
17.
The Arabidopsis KRYPTONITE gene encodes a member of the Su(var)3-9 family of histone methyltransferases. Mutations of kryptonite cause a reduction of methylated histone H3 lysine 9, a loss of DNA methylation, and reduced gene silencing. Lysine residues of histones can be either monomethylated, dimethylated or trimethylated and recent evidence suggests that different methylation states are found in different chromatin domains. Here we show that bulk Arabidopsis histones contain high levels of monomethylated and dimethylated, but not trimethylated histone H3 lysine 9. Using both immunostaining of nuclei and chromatin immunoprecipitation assays, we show that monomethyl and dimethyl histone H3 lysine 9 are concentrated in heterochromatin. In kryptonite mutants, dimethyl histone H3 lysine 9 is nearly completely lost, but monomethyl histone H3 lysine 9 levels are only slightly reduced. Recombinant KRYPTONITE can add one or two, but not three, methyl groups to the lysine 9 position of histone H3. Further, we identify a KRYPTONITE-related protein, SUVH6, which displays histone H3 lysine 9 methylation activity with a spectrum similar to that of KRYPTONITE. Our results suggest that multiple Su(var)3-9 family members are active in Arabidopsis and that dimethylation of histone H3 lysine 9 is the critical mark for gene silencing and DNA methylation.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号