首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
利用半定量RT-PCR和免疫组化的方法同时从mRNA水平和蛋白质水平对血管生成素样蛋白2在不同病理阶段的2型糖尿病肾病模型小鼠--db/db小鼠肾脏中的表达情况进行了较为系统的分析.结果发现:a.在糖尿病前的db/db小鼠(4周龄的db/db小鼠),血管生成素样蛋白2与作为正常对照的db/m小鼠相比,差异不是很大,随着肥胖的加剧,高血糖、蛋白尿的出现,血管生成素样蛋白2在db/db小鼠肾脏中的表达无论从mRNA水平还是从蛋白质水平均显著升高.b.从免疫组化的分析结果来看,血管生成素样蛋白2主要分布于小鼠肾脏的肾小球部分,主要是沿毛细血管袢呈线性分布,其位置与足细胞的位置重叠,足细胞是小鼠肾脏中血管生成素样蛋白2的主要分泌细胞.c.小鼠肾脏血管生成素样蛋白2的表达水平似乎还与鼠龄相关:虽然变化幅度不是很大,但在周龄较大的小鼠(如20周龄以上),其表达水平相对较高.上述工作不仅印证了先前对2型糖尿病肾病患者肾小球基因表达谱的分析结果,更加明确了血管生成素样蛋白2与糖尿病肾病的相关性,同时揭示了血管生成素样蛋白2在正常小鼠和糖尿病肾病小鼠肾脏中的表达、分布和变化规律,有利于进一步揭示血管生成素样蛋白2的功能及其在糖尿病肾病发生、发展过程中的可能作用,探讨糖尿病肾病的分子机制.  相似文献   

2.
CCAAT/enhancer-binding protein beta (C/EBPbeta) plays a key role in initiation of adipogenesis in adipose tissue and gluconeogenesis in liver; however, the role of C/EBPbeta in hepatic lipogenesis remains undefined. Here we show that C/EBPbeta inactivation in Lepr(db/db) mice attenuates obesity, fatty liver, and diabetes. In addition to impaired adipogenesis, livers from C/EBPbeta(-/-) x Lepr(db/db) mice had dramatically decreased triglyceride content and reduced lipogenic enzyme activity. C/EBPbeta deletion in Lepr(db/db) mice down-regulated peroxisome proliferator-activated receptor gamma2 (PPARgamma2) and stearoyl-CoA desaturase-1 and up-regulated PPARalpha independent of SREBP1c. Conversely, C/EBPbeta overexpression in wild-type mice increased PPARgamma2 and stearoyl-CoA desaturase-1 mRNA and hepatic triglyceride content. In FAO cells, overexpression of the liver inhibiting form of C/EBPbeta or C/EBPbeta RNA interference attenuated palmitate-induced triglyceride accumulation and reduced PPARgamma2 and triglyceride levels in the liver in vivo. Leptin and the anti-diabetic drug metformin acutely down-regulated C/EBPbeta expression in hepatocytes, whereas fatty acids up-regulate C/EBPbeta expression. These data provide novel evidence linking C/EBPbeta expression to lipogenesis and energy balance with important implications for the treatment of obesity and fatty liver disease.  相似文献   

3.
Angiopoietin-like protein 3 (ANGPTL3) is secreted by the liver and was recently postulated to be an important hormone regulating serum triglyceride levels. In the present study, in order to clarify the regulation of ANGPTL3 gene expression in diabetic states, we examined mRNA and protein levels of ANGPTL3 in the livers of diabetic animals. The level of ANGPTL3 mRNA was increased approximately 2.2-fold in the livers of streptozotocin (STZ) diabetic mice, and this effect was reversed by administration of insulin. Furthermore, the level of ANGPTL3 mRNA was increased more than 3.0-fold in type 2 diabetic obese mice, db/db mice, as compared with age matched lean littermates. The hepatic level of ANGPTL3 protein was also increased in these diabetic mice to an extent similar to that of ANGPTL3 mRNA. Thus, the expression of ANGPTL3 was enhanced in both insulin-deficient and -resistant diabetic states. These results strongly suggest ANGPTL3 to play an important role in hyperlipidemia in diabetes.  相似文献   

4.
Obesity and type 2 diabetes are associated with nonalcoholic steatohepatitis (NASH), but an obese/diabetic animal model that mimics human NASH remains undefined. We examined the induction of steatohepatitis and liver fibrosis in obese and type 2 diabetic db/db mice in a nutritional model of NASH and determined the relationship of the expressions of osteopontin (OPN) and leptin receptors to the pathogenesis of NASH. db/db mice and the corresponding lean and nondiabetic db/m mice were fed a diet deficient in methionine and choline (MCD diet) or control diet for 4 wk. Leptin-deficient obese and diabetic ob/ob mice fed similar diets were used for comparison. MCD diet-fed db/db mice exhibited significantly greater histological inflammation and higher serum alanine aminotransferase levels than db/m and ob/ob mice. Trichrome staining showed marked pericellular fibrosis in MCD diet-fed db/db mice but no significant fibrosis in db/m or ob/ob mice. Collagen I mRNA expression was increased 10-fold in db/db mice, 4-fold in db/m mice, and was unchanged in ob/ob mice. mRNA expressions of OPN, TNF-alpha, TGF-beta, and short-form leptin receptors (Ob-Ra) were significantly increased in db/db mice compared with db/m or ob/ob mice. Parallel increases in OPN and Ob-Ra protein levels were observed in db/db mice. Cultured hepatocytes expressed only Ob-Ra, and leptin stimulated OPN mRNA and protein expression in these cells. In conclusion, our results demonstrate the development of an obese/diabetic experimental model for NASH in db/db mice and suggest an important role for Ob-Ra and OPN in the pathogenesis of NASH.  相似文献   

5.

Background

Nitrosative and oxidative stress play a key role in obesity and diabetes-related mitochondrial dysfunction. The objective was to investigate the effect of curcumin treatment on state 3 and 4 oxygen consumption, nitric oxide (NO) synthesis, ATPase activity and lipid oxidation in mitochondria isolated from liver and kidneys of diabetic db/db mice.

Results

Hyperglycaemia increased oxygen consumption and decreased NO synthesis in liver mitochondria isolated from diabetic mice relative to the control mice. In kidney mitochondria, hyperglycaemia increased state 3 oxygen consumption and thiobarbituric acid-reactive substances (TBARS) levels in diabetic mice relative to control mice. Interestingly, treating db/db mice with curcumin improved or restored these parameters to normal levels; also curcumin increased liver mitochondrial ATPase activity in db/db mice relative to untreated db/db mice.

Conclusions

These findings suggest that hyperglycaemia modifies oxygen consumption rate, NO synthesis and increases TBARS levels in mitochondria from the liver and kidneys of diabetic mice, whereas curcumin may have a protective role against these alterations.  相似文献   

6.
Adrenalectomy (ADX) prevents the excessive weight gain in the genetically obese ob/ob and db/db mice. To test the possibility that this results from increased energy expenditure due to increased thermogenesis in brown adipose tissue (BAT), we measured GDP binding to mitochondria from interscapular brown adipose tissue (BAT) in db/db and ob/ob mice and their lean controls after adrenalectomy, with and without corticosterone replacement. Both the vehicle treated and corticosterone treated db/db and ob/ob mice had lower body weights than the sham-operated mice GDP binding to mitochondria from IBAT was significantly lower in both the db/db and ob/ob mice than in their lean controls. Adrenalectomy significantly increased GDP binding in all mice compared to the respective sham-operated mice, but, the percentage increase was always greater in the db/db and ob/ob mice. Corticosterone treatment of adrenalectomized db/db, ob/ob or lean mice lowered GDP binding to sham levels. Our data confirm previous findings that adrenalectomy results in increased GDP binding to mitochondria from IBAT. Injections of corticosterone into adrenalectomized mice results in a decrease in GDP binding to values which are similar to values in sham-operated mice. Thus adrenalectomy may inhibit the development of obesity by increasing the thermic activity in IBAT.  相似文献   

7.
Glycosylation has an important role in regulating properties of proteins and is associated with many diseases. To examine the alteration of serum N-glycans in type 2 diabetes, we used the db/db mouse model. Serum N-glycans were fluorescence labeled and applied to HPLC. There were reproducible differences in N-glycan profiles between the db/db mouse model and the db/+ control. The structures of the oligosaccharides, which had changed in their amounts, were analyzed by a two-dimensional mapping method, matrix-assisted laser desorption ionization-time-of-flight mass spectrometry, and exoglycosidase digestion. Those analyses revealed an increase in the N-glycans possessing alpha1,6-fucose in the serum of db/db mice. The level of alpha1,6-fucosyltransferase mRNA was increased in the liver of the db/db mice. The ratio of a biantennary N-glycan with alpha1,6-fucose to that without alpha1,6-fucose in the liver tissue of the db/db mouse was increased relative to the db/+ control. Next, we analyzed the serum N-glycan profile in human subjects with type 2 diabetes and found an increased amount of a biantennary N-glycan that had an alpha1,6-fucose with a bisecting N-acetylglucosamine. In conclusion, the increase in alpha1,6-fucosylation is a striking change in the serum N-glycans of the db/db mice, whereas the change in the fucosylation in humans with type 2 diabetes was small, albeit statistically significant. It is likely that the change is caused, at least partially, by the increase in the alpha1,6-fucosyltransferase mRNA level in the liver. The increased alpha1,6-fucosylation may affect protein properties associated with the pathophysiology of type 2 diabetes.  相似文献   

8.

Background

Atherosclerosis is one of the major complications of type 2 diabetic patients (T2DM), leading to morbidity and mortality. Grape seed procyanidin B2 (GSPB2) has demonstrated protective effect against atherosclerosis, which is believed to be, at least in part, a result of its antioxidative effects. The aim of this study is to identify the target protein of GSPB2 responsible for the protective effect against atherosclerosis in patients with DM.

Methods and Results

GSPB2 (30 mg/kg body weight/day) were administrated to db/db mice for 10 weeks. Proteomics of the aorta extracts by iTRAQ analysis was obtained from db/db mice. The results showed that expression of 557 proteins were either up- or down-regulated in the aorta of diabetic mice. Among those proteins, 139 proteins were normalized by GSPB2 to the levels comparable to those in control mice. Among the proteins regulated by GSPB2, the milk fat globule epidermal growth factor-8 (MFG-E8) was found to be increased in serum level in T2DM patients; the serum level of MFG-E8 was positively correlated with carotid-femoral pulse wave velocity (CF-PWV). Inhibition of MFG-E8 by RNA interference significantly suppressed whereas exogenous recombinant MFG-E8 administration exacerbated atherogenesis the db/db mice. To gain more insights into the mechanism of action of MFG-E8, we investigated the effects of MFG-E8 on the signal pathway involving the extracellular signal-regulated kinase (ERK) and monocyte chemoattractant protein-1 (MCP-1). Treatment with recombinant MFG-E8 led to increased whereas inhibition of MFG-E8 to decreased expression of MCP-1 and phosphorylation of ERK1/2.

Conclusion

Our data suggests that MFG-E8 plays an important role in atherogenesis in diabetes through both ERK and MCP-1 signaling pathways. GSPB2, a well-studied antioxidant, significantly inhibited the arterial wall changes favoring atherogenesis in db/db mice by down-regulating MFG-E8 expression in aorta and its serum level. Measuring MFG-E8 serum level could be a useful clinical surrogate prognosticating atherogenesis in DM patients.  相似文献   

9.
Diabetic db/db mice exhibit profound insulin resistance in vivo, but the specific degree of cardiac insensitivity to insulin has not been assessed. Therefore, the effect of insulin on cardiomyocytes from db/db hearts was assessed by measuring two metabolic responses (deoxyglucose uptake and fatty acid oxidation) and the phosphorylation of two enzymes in the insulin-signaling cascade [Akt and AMP-activated protein kinase (AMPK)]. Maximal insulin-stimulated deoxyglucose transport was reduced to 58 and 40% of control in cardiomyocytes from db/db mice at two ages (6 and 12 wk). Insulin-stimulated deoxyglucose uptake was also reduced in myocytes from transgenic db/db mice overexpressing the insulin-sensitive glucose transporter (db/db-hGLUT4). Treatment of db/db mice for 1 wk with an insulin-sensitizing peroxisome proliferator-activated receptor-gamma agonist (COOH) completely normalized insulin-stimulated deoxyglucose uptake. Insulin had no direct effect on palmitate oxidation by either control or db/db cardiomyocytes, but the combination of insulin and glucose reduced palmitate oxidation, likely an indirect effect secondary to increased glucose uptake. Insulin had no effect on AMPK phosphorylation from either control or db/db cardiomyocytes. Insulin increased the phosphorylation of Akt in all cardiomyocyte preparations (control, db/db, COOH-treated db/db) to the same extent. Thus insulin has selective metabolic actions in mouse cardiomyocytes; deoxyglucose uptake and Akt phosphorylation are increased, but fatty acid oxidation and AMPK phosphorylation are unchanged. Insulin resistance in db/db cardiomyocytes is manifested by reduced insulin-stimulated deoxyglucose uptake.  相似文献   

10.
糖尿病心肌病(diabetic cardiomyopathy, DCM)是指发生于糖尿病患者,不能用冠心病、高血压性心脏病及其他心脏病变来解释的心肌疾病。目前,DCM的病因和发病机制尚未完全阐明,且缺乏特异性治疗手段。中药管花肉苁蓉提取物松果菊苷(echinacoside, ECH)对心肌细胞具有保护作用。以db/m小鼠为正常对照组(db/m组),db/db小鼠分为模型组(db/db组)和ECH干预组(db/db+ECH组),探讨了ECH对糖尿病db/db小鼠心肌的影响及机制。db/db+ECH组小鼠给予松果菊苷灌胃,db/m组和db/db组小鼠给予0.9%氯化钠溶液灌胃。心脏超声观察心脏功能,Masson染色观察组织胶原纤维含量,逆转录聚合酶链式反应检测Ⅰ型胶原和Ⅲ型胶原mRNA的表达,蛋白质免疫印迹技术检测转化生长因子-β1(transforming growth factor-β1, TGF-β1)、phospho-Smad2(p-Smad2)和phospho-Smad3(p-Smad3)的表达。结果显示,ECH能够改善db/db小鼠左心室肥大和心脏功能,降低胶原沉积(P<...  相似文献   

11.
Metabolic syndrome consists of metabolic abnormality with central obesity, hypertriglyceridemia, insulin resistance and hypertension. Adipose tissue has been known as a primary site of insulin resistance and its adipocyte size may be correlated with the degree of insulin resistance. A designed angiopoietin-1, COMP-Angiopoietin-1 (COMP-Ang1), mitigated high-fat diet-induced insulin resistance in skeletal muscle. In this study, we examined effects of COMP-Ang1 on adipocyte droplet size, vascular endothelial cell density in adipose tissue and metabolic parameters in db/db mice by administering COMP-Ang1 or LacZ (as a control) adenovirus. Administration of COMP-Ang1 decreased fat droplet diameter in epididymal and abdominal visceral adipocyte and visceral fat content in db/db mice. The density of vascular endothelial cell in adipose tissue was increased in db/db mice after treatment with COMP-Ang1. Serum resistin and tumor necrosis factor-α level was lower after treatment with COMP-Ang1 in db/db mice. COMP-Ang1 caused a restoration of fasting glycemic control in db/db mice and decreased serum insulin level and insulin resistance measured by HOMA index. These findings indicate that COMP-Ang1 regulates adipocyte fat droplet diameter, vascular endothelial cell density and metabolic parameters in db/db mice.  相似文献   

12.
Summary Knowledge of the metabolic changes that occur in insulin-resistant type 2 diabetes is relatively lacking compared to insulin-deficient type 1 diabetes. This paper summarizes the importance of the C57BL/KsJ-db/db mouse as a model of type 2 diabetes, and illustrates the effects that insulin-deficient and insulin-resistant states have on hepatic glycogen metabolism. A longitudinal study of db/db mice of ages 2–15 weeks revealed that significant changes in certain parameters of hepatic glycogen metabolism occur during this period. The liver glycogen levels were similar between diabetic and control mice. However, glycogen particles from db/db mice were on average smaller in mass and had shorter exterior and interior chain lengths. Total phosphorylase and phosphorylase a activities were elevated in the genetically diabetic mice. This was primarily due to an increase in the amount of enzymic protein apparently the result of a decreased rate of degradation. It was not possible to find a consistent alteration in glycogen synthase activity in the db/db mice. Glycogen synthase and phosphorylase from diabetic liver revealed some changes in kinetic properties in the form of a decrease in Vmax, and altered sensitivity to inhibitors like ATP. The altered glycogen structure in db/db mice may have contributed to changes in the activities and properties of glycogen synthase and phosphorylase. The exact role played by hormones (insulin and glucagon) in these changes is not clear but further studies should reveal their contributions. The db/db mouse provides a good model for type 2 diabetes and for fluctuating insulin and glucagon ratios. Its use should clarify the regulation of hepatic glycogen metabolism and other metabolic processes known to be controlled by these hormones. The other animal models of type 2 diabetes, ob/ob mouse and fatty Zucker (fa/fa) rat, show similar impairment of hepatic glycogen metabolism. The concentrations of glycogen metabolizing enzymes are high and in vitro studies indicate enhanced rate of glycogen synthesis and breakdown. However, streptozotocin-induced diabetic animals and BB rats which resemble insulin-deficient type 1 diabetes are characterized by decreased glycogen turnover as a result of reduction in the levels of glycogen metabolizing enzymes.  相似文献   

13.

Objective

Resistance vessel remodeling is controlled by myriad of hemodynamic and neurohormonal factors. This study characterized structural and molecular remodeling in mesenteric resistance arteries (MRAs) in diabetic (db/db) and control (Db/db) mice.

Methods

Structural properties were assessed in isolated MRAs from 12 and 16 wk-old db/db and Db/db mice by pressure myography. Matrix regulatory proteins were measured by Western blot analysis. Mean arterial pressure and superior mesenteric blood flow were measured in 12 wk-old mice by telemetry and a Doppler flow nanoprobe, respectively.

Results

Blood pressure was similar between groups. Lumen diameter and medial cross-sectional area were significantly increased in 16 wk-old db/db MRA compared to control, indicating outward hypertrophic remodeling. Moreover, wall stress and cross-sectional compliance were significantly larger in diabetic arteries. These remodeling indices were associated with increased expression of matrix regulatory proteins matrix metalloproteinase (MMP)-9, MMP-12, tissue inhibitors of matrix metalloproteinase (TIMP)-1, TIMP-2, and plasminogen activator inhibitor-1 (PAI-1) in db/db arteries. Finally, superior mesenteric artery blood flow was increased by 46% in 12 wk-old db/db mice, a finding that preceded mesenteric resistance artery remodeling.

Conclusions

These data suggest that flow-induced hemodynamic changes may supersede the local neurohormonal and metabolic milieu to culminate in hypertrophic outward remodeling of type 2 DM mesenteric resistance arteries.  相似文献   

14.
1. Liver post-nuclear supernatants (PNS) from genetically obese (ob/ob and db/db), lean (+/?), and albino mice were fractionated by dual centrifugation in B-XIV zonal rotors and subcellular fractions were analysed by marker-enzyme estimations and by electron microscopy. 2. Rate-dependent banding of PNS yielded a peroxisome-enriched region (PER) well-separated from mitochondria. 3. Density-dependent banding of PER in ob/ob and db/db mice only, yielded purified peroxisomes which were associated with malate dehydrogenase (cytosolic) and monoamine oxidase. 4. Markers for the mitochondrial matrix, intermembrane space and inner membrane compartments were absent from the peroxisomes. 5. The experimental results are interpreted as indicating that peroxisomes of genetically obese mice are either altered so that protein import is imprecise or so that their attachment to mitochondria is more extensive.  相似文献   

15.
Liang CR  Leow CK  Neo JC  Tan GS  Lo SL  Lim JW  Seow TK  Lai PB  Chung MC 《Proteomics》2005,5(8):2258-2271
Proteome analysis of human hepatocellular carcinoma tissues was conducted using two-dimensional difference gel electrophoresis coupled with mass spectrometry. Paired samples from the normal and tumor region of resected human liver were labeled with Cy3 and Cy5, respectively while the pooled standard sample was labeled with Cy2. After analysis by the DeCyder software, protein spots that exhibited at least a two-fold difference in intensity were excised for in-gel tryptic digestion and matrix-assisted laser desorption/ionization-time of flight mass spectrometry. A total of 6 and 42 proteins were successfully identified from the well- and poorly-differentiated samples, respectively. The majority of these proteins are related to detoxification/oxidative stress and metabolism. Three down-regulated metabolic enzymes, methionine adenosyltransferase, glycine N-methyltransferase, and betaine-homocysteine S-methyltransferase that are involved in the methylation cycle in the liver are of special interest. Their expression levels, especially, methionine adenosyltransferase, seemed to have a major influence on the level of S-adenosylmethionine (AdoMet), a vital intermediate metabolite required for the proper functioning of the liver. Recent work has shown that chronic deficiency in AdoMet in the liver results in spontaneous development of steatohepatitis and hepatocellular carcinoma, and hence the down-regulation of hepatic methionine adenosyltransferase in our hepatocellular carcinoma samples is in line with this observation. Moreover, when a comparison is made between the differentially expressed proteins from our human hepatocellular carcinoma samples and from the liver tissues of knockout mice deficient in methionine adenosyltransferase, there is a fairly good correlation between them.  相似文献   

16.
Expression of the diabetes ( db/db) genotype mutation in female C57BL/KsJ mice induces a complex diabetes-obesity syndrome (DOS) responsible for reproductive tract involution promoted by hypercytolipidemia (HCL). Current studies define the complex and influences of the endometabolic variables that promote reproductive tract involution at the time of initial db/db mutation expression onset in female C57BL/KsJ mice. Littermate-paired, normal ( +/?) and db/db groups were isolated between 2 - 4 weeks of age and tissue samples analyzed for utero-ovarian alterations induced by the systemic, tissue, cellular and structural consequences of mutation expression. Significantly elevated body weights, blood glucose concentrations and serum insulin levels contrasted with atrophic utero-ovarian indices in db/db mutants compared to +/? groups. The onset of the db/db-expression promoted obesity and a mild hyperglycemic-hyperinsulinemic state. Initial db/db expression was characterized by significantly increased utero-ovarian insulin binding without variation in membrane insulin receptor concentrations. However, significant elevations in tissue glucose sequestration rates, norepinephrine (NE) concentrations and triacylglyceride lipase activity in db/db groups indicated that a complex of endometabolic counter-regulatory influences promoted the metabolic shunting of excess glucose and triglyceride moieties towards hypercytolipidemic storage. The resulting DOS-promoted accumulation of utero-ovarian cytolipidemic pools compromised reproductive tract cytoarchitecture in db/db mice. The results of these studies indicate that the inability of utero-ovarian tissue compartments to exhibit metabolic adaptation to the enhanced availability, transport and cellular imbibition of extracellular glucose-lipid pools promotes the initial cellular compromise recognized to induce reproductive failure in db/db mutants.  相似文献   

17.
18.
The NAD+-dependent deacetylase SIRT1, which is associated with the improvement of metabolic syndromes, such as type 2 diabetes, is a well-known longevity-related gene. Several in vitro and in vivo studies have shown the known protective effects of SIRT1 activators, such as resveratrol and SRT1720, on diabetes- or obesity-induced fatty liver and insulin resistance. Here, we newly synthesized 18 benzoxazole hydrochloride derivatives based on the structure of resveratrol and SRT1720. We performed an in vitro SIRT1 activity assay to identify the strongest SIRT1 activator. The assay confirmed MHY2233 to be the strongest SIRT1 activator (1.5-fold more potent than resveratrol), and docking simulation showed that the binding affinity of MHY2233 was higher than that of resveratrol and SRT1720. To investigate its beneficial effects, db/db mice were orally administered MHY2233 for 1?month, and various metabolic parameters were assessed in the serum and liver tissues. MHY2233 markedly ameliorated insulin signaling without affecting body weight in db/db mice. In particular, the mRNA expression of lipogenic genes, such as acetyl CoA carboxylase, fatty acid synthase, and sterol regulatory element-binding protein, which increased in db/db mice, decreased following oral treatment with MHY2233.In conclusion, the novel SIRT1 activator MHY2233 reduced lipid accumulation and improved insulin resistance. This finding may contribute toward therapeutic approaches for fatty liver disease and glucose tolerance.  相似文献   

19.
Developmental changes in lipogenesis have been examined in interscapular brown adipose tissue (BAT), epididymal white adipose tissue and the liver of genetically diabetic (db/db) mice and their normal siblings. Lipogenesis was measured in vivo with 3H2O, from weaning (21 days of age) until 20 weeks of age. Hyperinsulinaemia was evident in db/db mice at all ages. Low rates of lipogenesis were observed at weaning in tissues of both groups of mice, but the rate rose rapidly in the first few days post-weaning. In normal mice, peak lipogenesis was obtained in each tissue at 4-5 weeks of age, and there were no major changes (on a whole-tissue basis) thereafter. A different developmental pattern was apparent in db/db mice. The rate of lipogenesis in BAT rose sharply after weaning, reaching a peak at 26 days of age (several times higher than normal mice), and then falling rapidly such that by 45 days of age it was lower than in normal mice; at age 20 weeks lipogenesis in BAT of the diabetic animals was negligible. In white adipose tissue of the db/db mutants lipogenesis (per tissue) reached a maximum at 5 weeks of age, and fell substantially between 10 and 20 weeks of age. Hepatic lipogenesis in the db/db mice rose progressively from weaning until 8 weeks of age, and then decreased. Except at weaning, hepatic lipogenesis (per tissue) was much greater in db/db mice than in normal mice, and the liver was a more important site of lipogenesis in diabetic mice than in normals, accounting for up to 60% of the whole-body total. In contrast, BAT accounted for a considerably smaller proportion of whole-body lipogenesis in db/db mice than in normal mice. It is concluded that there are major developmental differences in lipogenesis between tissues of db/db mice, and between diabetic and normal animals. The data suggest that there is an early and preferential development of insulin resistance in BAT of the db/db mutant.  相似文献   

20.
We reported previously that angiopoietin-like protein3 (ANGPTL3), a liver-specific secretory factor, increased plasma triglyceride (TG) via inhibition of lipoprotein lipase and free fatty acid (FFA) by activating adipose-lipolysis. The current study examined the regulation of Angptl3 by leptin and insulin, both of which are key players in the metabolic syndrome. Angptl3 expression and plasma ANGPTL3 levels were increased in leptin-resistant C57BL/6J(db/db) and -deficient C57BL/6J(ob/ob) mice, relative to the control. Leptin supplements decreased Angptl3 gene expression and plasma ANGPTL3 in C57BL/6J(ob/ob) mice. The changes of Angptl3 were associated with alterations of plasma TG and FFA levels. Leptin treatment directly suppressed Angptl3 gene expression in hepatocytes. Angptl3 gene expression and plasma protein levels were also increased in insulin-deficient streptozotocin-treated mice. Insulin treatment of hepatocytes decreased Angptl3 gene expression and protein secretion. Our results suggest that elevated ANGPTL3 by leptin- or insulin-resistance is attributed to increased plasma TG and FFA concentrations in obesity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号