首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A serogroup of non-O1 Vibrio cholerae , tentatively named Hakata, possessing the C (Inaba) factor but not the B (Ogawa) and A factors of V. cholerae O1 is described. Strains of this serogroup were isolated from river and estuarine waters and from frozen shrimps.  相似文献   

2.
目的:建立针对O1群霍乱弧菌的实时荧光定量TaqMan PCR快速检测方法,并进行模拟粪便标本的检测评价。方法:根据O1群霍乱弧菌O抗原编码基因rfb的特异性序列设计引物和TaqMan探针,建立检测O1群霍乱弧菌的实时荧光定量TaqMan PCR快速检测方法,对所建立的方法分别进行实验室内的灵敏度及特异性评价;将O1群霍乱弧菌灭活菌株悬液倍比稀释后与健康成人新鲜粪便混匀,制备成模拟带菌者粪便标本,提取DNA,进行Taq-Man PCR检测,用以评价该方法。结果:建立了快速检测O1群霍乱弧菌的实时荧光定量TaqMan PCR方法,灵敏度为每反应体系104拷贝;该方法对其他14种肠道菌DNA没有扩增;该方法对模拟粪便标本的检测灵敏度为每反应体系102 CFU。结论:建立了一种快速、高效检测O1群霍乱弧菌的荧光定量PCR检测方法,该方法可用于O1群霍乱弧菌临床粪便标本的检测。  相似文献   

3.
Abstract Haemaglutinin/protease (HA/P) is one of the virulence factors of Vibrio cholerae O1 and pathogenic strains of V. cholerae non-O1. In this study, we examined protease activity of a new serogroup of Vibrio cholerae recently designated as O139 synonym Bengal. The protease activity was produced by all eight isolates of V. cholerae O139 from Bangladeshi patients. Purification and partial characterization of the protease from V. cholerae O139 demonstrated the purified protease (O139-P) was indistinguishable from that previously reported for HA/P of V. cholerae non-O1 (NAG-HA/P) and V. cholerae O1 (Vc-HA/P). These results prove that V. cholerae O139 produces a protease belonging to solHA/P, and suggest that the protease is another virulence factor found in newly emerged V. cholerae O139, as in V. cholerae O1.  相似文献   

4.
The bacterial chromosomal replication origin (ori) sequences are a highly conserved essential genetic element. In this study, the large chromosomal replication origin sequence of Vibrio cholerae (oriCIVC) has been targeted for identification of the organism, including the biotypes of serogroup O1. The oriCIVC sequence-based PCR assay specifically amplified an 890 bp fragment from all the V. cholerae strains examined. A point mutation in the oriCIVC sequence of the classical biotype of O1 serogroup led to the loss of a BglII site, which was utilized for differentiation from El Tor vibrios. Interestingly, the PCR assay amplified a similarly sized ori segment, designated as oriCIVM, from V. mimicus strains, but failed to produce any amplicon with other strains. Cloning and sequencing of the oriCIVM revealed high sequence similarity (96%) with oriCIVC. The results indicate that V. mimicus is indeed very closely related to V. cholerae. In addition, the BglII restriction fragment length polymorphism (RFLP) between oriCIVM and oriCIVC sequences allowed us to differentiate the two species. The ori sequence-based PCR-RFLP assay developed in this study appears to be a useful method for rapid identification and differentiation of V. cholerae and V. mimicus strains, as well as for the delineation of classical and El Tor biotypes of V. cholerae O1.  相似文献   

5.
Cholera bacteriophages have been isolated from 27 lysogenic cultures of V. cholerae O139. As shown the pages under study belong to two morphological groups A1 and F1 and serological types II and XII. The use of prophage typing and the sensitivity test to specific phage made it possible to differentiate V. cholerae strains, serogroup O139.  相似文献   

6.
The organization and distribution of the genes responsible for O antigen biosynthesis in various serogroups of Vibrio cholerae were investigated using several DNA probes derived from various regions of the genes responsible for O1 antigen biosynthesis. Based on the reactivity pattern of the probes against the various serogroups, the cluster of genes responsible for the O1 antigen biosynthesis could be broadly divided into six groups, designated as class 1-6. The class 3 cluster of genes corresponding to gmd to wbeO, wbeT and a part of wbeU was specific for only the O1 serogroup. The other cluster of genes (class 1, 2, 4-6) reacted with other serogroups of V. cholerae. These data indicate that serotype conversion in V. cholerae does not depend on a simple mutational event but may involve horizontal gene transfer not only between V. cholerae strains but also between V. cholerae and species other than V. cholerae.  相似文献   

7.
Zymovars analysis also known as multilocus enzyme electrophoresis is applied here to investigate the genetic variation of Vibrio cholerae strains and characterise strains or group of strains of medical and epidemiological interest. Fourteen loci were analyzed in 171 strains of non-O1 non-O139, 32 classical and 61 El Tor from America, Africa, Europe and Asia. The mean genetic diversity was 0.339. It is shown that the same O antigen (both O1 and non-O1) may be present in several genetically diverse (different zymovars) strains. Conversely the same zymovar may contain more than one serogroup. It is confirmed that the South American epidemic strain differs from the 7th pandemic El Tor strain in locus LAP (leucyl leucyl aminopeptidase). Here it is shown that this rare allele is present in 1 V. mimicus and 4 non-O1 V. cholerae. Non toxigenic O1 strains from South India epidemic share zymovar 14A with the epidemic El Tor from the 7th pandemic, while another group have diverse zymovars. The sucrose negative epidemic strains isolated in French Guiana and Brazil have the same zymovar of the current American epidemic V. cholerae.  相似文献   

8.
A serogroup of Vibrio fluvialis possessing the C (Inaba) antigen but not the B (Ogawa) nor A antigen of V. cholerae O1 is described. The O-antigen of this serogroup was identical with that of bioserogroup 1875-variant of a marine Vibrio species. As the O-antigen of this serogroup was not agglutinated by any of O-antisera for the 18 serogroups of V. fluvialis already recognized, it was designated O-serogroup 19 of this species.  相似文献   

9.
多重PCR方法检测霍乱弧菌的研究   总被引:1,自引:0,他引:1  
霍乱弧菌是霍乱的病原体,可以分为O1群、O139群和非O1/非O139群。O1群和O139群霍乱弧菌产生的霍乱肠毒素(也称霍乱毒素)是产生霍乱的主要原因,也只有O1群和O139群霍乱弧菌可引起霍乱。其他群的霍乱弧菌毒性不高,但在食品中也不允许被检出。实验以霍乱胶原酶基因和霍乱毒素基因为目的基因,试图建立一种PCR方法对霍乱弧菌进行检测研究,结果表明此方法可以用于食品中的霍乱弧菌检测。  相似文献   

10.
A thermolabile toxin (molecular weight, 52 711; isoelectric point, 8.65) produced by a clinical isolate of Vibrio cholerae serogroup non-O1 was cytotoxic for Y-1 mouse adrenal cells and Chinese hamster ovary cells. The toxin lysed rabbit red blood cells and produced a hemorrhagic zone in rabbit skin. When injected intravenously into adult mice, the cytolysin was rapidly lethal and caused fluid accumulation in both 5- and 18-h rabbit ileal loops. Strains of V. cholerae that produced cytolysin but no cholerae enterotoxin were able to cause fluid accumulation in rabbit intestinal loops.  相似文献   

11.
Vibrio cholerae is autochthonous to natural waters and can pose a health risk when it is consumed via untreated water or contaminated shellfish. The correlation between the occurrence of V. cholerae in Chesapeake Bay and environmental factors was investigated over a 3-year period. Water and plankton samples were collected monthly from five shore sampling sites in northern Chesapeake Bay (January 1998 to February 2000) and from research cruise stations on a north-south transect (summers of 1999 and 2000). Enrichment was used to detect culturable V. cholerae, and 21.1% (n = 427) of the samples were positive. As determined by serology tests, the isolates, did not belong to serogroup O1 or O139 associated with cholera epidemics. A direct fluorescent-antibody assay was used to detect V. cholerae O1, and 23.8% (n = 412) of the samples were positive. V. cholerae was more frequently detected during the warmer months and in northern Chesapeake Bay, where the salinity is lower. Statistical models successfully predicted the presence of V. cholerae as a function of water temperature and salinity. Temperatures above 19 degrees C and salinities between 2 and 14 ppt yielded at least a fourfold increase in the number of detectable V. cholerae. The results suggest that salinity variation in Chesapeake Bay or other parameters associated with Susquehanna River inflow contribute to the variability in the occurrence of V. cholerae and that salinity is a useful indicator. Under scenarios of global climate change, increased climate variability, accompanied by higher stream flow rates and warmer temperatures, could favor conditions that increase the occurrence of V. cholerae in Chesapeake Bay.  相似文献   

12.
Vibrio cholerae serogroup O1, the causative agent of cholera, is capable of surviving in aquatic environments for extended periods and is considered an autochthonous species in estuarine and brackish waters. These environments contain numerous elements that may affect its ecology. The studies reported here examined physical interactions between V. cholerae O1 and natural plankton populations of a geographical region in Bangladesh where cholera is an endemic disease. Results showed that four of five clinical V. cholerae O1 strains and endogenous bacterial flora were attached preferentially to zooplankton molts (exuviae) rather than to whole specimens. One strain attached in approximately equal numbers to both exuviae and whole specimens. V. cholerae O1 also attached to several phytoplankton species. The results show that V. cholerae O1 can bind to diverse plankton species collected from an area where cholera is an endemic disease, with potentially significant effects on its ecology.  相似文献   

13.
Two serogroups of Vibrio cholerae non-O1 possessing somatic antigen factors in common with Hakata serogroup of V. cholerae are described. One group was included in the Hakata serogroup and has its own antigen other than all O-antigens of the Hakata group. The other group had its own major antigen, but not factor F specific for the Hakata group.  相似文献   

14.
Vibrio cholerae serogroup O1, the causative agent of cholera, is capable of surviving in aquatic environments for extended periods and is considered an autochthonous species in estuarine and brackish waters. These environments contain numerous elements that may affect its ecology. The studies reported here examined physical interactions between V. cholerae O1 and natural plankton populations of a geographical region in Bangladesh where cholera is an endemic disease. Results showed that four of five clinical V. cholerae O1 strains and endogenous bacterial flora were attached preferentially to zooplankton molts (exuviae) rather than to whole specimens. One strain attached in approximately equal numbers to both exuviae and whole specimens. V. cholerae O1 also attached to several phytoplankton species. The results show that V. cholerae O1 can bind to diverse plankton species collected from an area where cholera is an endemic disease, with potentially significant effects on its ecology.  相似文献   

15.
In this review information on the chemical structure, biosynthesis, antigenic and biological properties of V. cholerae lipopolysaccharide (LPS) is presented. The specific structural feature of this LPS is a small size of the polysaccharide chain of O-antigen. In vibrios of serogroup O 139 it is oligosaccharide. The modification of the O-chain (methylation of individual sugars, shortened chain, etc.) plays an essential role in the antigenic specificity of V. cholerae LPS. All these factors affect of endotoxin function, the microbial resistance to external influences. V. cholerae LPS takes part in the formation of microcapsules and biofilms. The evolutional development of V. cholerae in this direction determines, to some extent, their increased resistance in the environment. In human body the heterogeneity of the LPS composition permits the preservation of vibrios and ensures, together with cholerogen, their pathogenetic action.  相似文献   

16.
The environmental reservoirs for Vibrio cholerae are natural aquatic habitats, where it colonizes the chitinous exoskeletons of copepod molts. Growth of V. cholerae on a chitin surface induces competence for natural transformation, a mechanism for intra-species gene exchange. The antigenically diverse O-serogroup determinants of V. cholerae are encoded by a genetically variable biosynthetic cluster of genes that is flanked on either side by chromosomal regions that are conserved between different serogroups. To determine whether this genomic motif and chitin-induced natural transformation might enable the exchange of serogroup-specific gene clusters between different O serogroups of V. cholerae, a strain of V. cholerae O1 El Tor was co-cultured with a strain of V. cholerae O139 Bengal within a biofilm on the same chitin surface immersed in seawater, and O1-to-O139 transformants were obtained. Serogroup conversion of the O1 recipient by the O139 donor was demonstrated by comparative genomic hybridization, biochemical and serological characterization of the O-antigenic determinant, and resistance of O1-to-O139 transformants to bacteriolysis by a virulent O1-specific phage. Serogroup conversion was shown to have occurred as a single-step exchange of large fragments of DNA. Crossovers were localized to regions of homology common to other V. cholerae serogroups that flank serogroup-specific encoding sequences. This result and the successful serogroup conversion of an O1 strain by O37 genomic DNA indicate that chitin-induced natural transformation might be a common mechanism for serogroup conversion in aquatic habitats and for the emergence of V. cholerae variants that are better adapted for survival in environmental niches or more pathogenic for humans.  相似文献   

17.
Vibrio cholerae is the etiological agent of cholera. V. cholerae serogroup O1 had been, until 1992, the only serogroup responsible for large epidemics and pandemics of cholera. In 1992, a new serotype of V. cholerae emerged in South-East Asia that caused a massive outbreak of cholera in India and neighboring countries. The new serotype was named V. cholerae O139. The main differences between V. cholerae O139 and O1 are that the former possesses a capsular polysaccharide and different lipopolysaccharide. Capsular polysaccharides are, in general, T-independent antigens giving rise to poor immune responses lacking immunological memory. In order to overcome this, monoclonal antibodies against the capsular polysaccharide of V. cholerae O139 were used to screen different phage-displayed random peptide libraries. Eight different phage clones were selected and characterized using enzyme immunoassay with the monoclonal antibodies, and then tested for specificity by competition with V. cholerae O139 capsular polysaccharide. Selected peptides were sequenced, synthesized and conjugated to bovine serum albumin (BSA) and keyhole limpet hemocyanin (KLH). The conjugated peptides were used to immunize mice. It is evident that the anti-peptide mouse antibodies bind to the V. cholerae O139 capsular polysaccharide. In addition, the anti-peptide antibodies are protective in a suckling mouse model. The protective efficacy is both specific and dose-dependent. A PCT (PCT/IT2003/000489) with the publication number WO 2004/056851 has been filed for the sequences of the eight peptides.  相似文献   

18.
To find out stable and effective producers of major protective antigens intended for use as components of cholera chemical vaccine against V. cholerae strains of serogroups O and O139, the comparative analysis of the production of cholera toxin, toxin-coregulated pili (TCP), antigens O1 and O139, polysaccharide capsule and outer membrane protein OmpU in different V. cholerae strains groups O1 and O139 has been made. V. cholerae strain KM68, serogroup O1, has been found capable of the production of antigen O1, serovar Ogawa, protein OmpU at a sufficiently high level and the hyperproduction of cholera toxin and TCP, and thus suitable for use in the manufacture of cholera bivalent vaccine as the source of these antigens. Specially selected alysogenic noncapsular strain KM137 of serogroup O139, characterized by a high and stable level of the biosynthesis of this somatic antigen when grown in both laboratory and production conditions, may serve as the produces of antigen O139.  相似文献   

19.
Study of molecular-epidemiological characteristics of Vibrio cholerae non O1/non O139 serogroup with complete and limited set of virulence genes was performed. Differences of their genes composition as compared to these of O1 serogroup (classic and El Tor biovars) were revealed, which points to their origin from avirulent environmental cholera vibrios.  相似文献   

20.
The epitope composition of O-polysaccharides in the lipopolysaccharide (LPS) of V. cholerae, serogroup O139, isolated from clinical material and water of surface reservoirs was analyzed with the use of monoclonal antibodies. The analysis demonstrated that these O-polysaccharides were similar in their structure and chemical composition. In LPS of V. cholerae O139 clinical strains O-polysaccharide determinants occurred more often. Among V. cholerae isolated from water strains on whose surface individual epitopes of O-polysaccharide occurred less frequently or were absent appeared to be more numerous. A decrease in the concentration of microbial cells in the process of their testing by immunological methods led to increased percent of negative reactions with specific antibodies. Some V. cholerae O139 strains isolated from water were similar in the epitope composition of their O-polysaccharide and binding activity to cultures isolated from humans. As indicated by the results of these studies, cholera vibrios Bengal and vibrios isolated from river water on the territory of Russia had quantitative differences due to a higher level of the production of O-polysaccharide determinants and their occurrence in V. cholerae of serogroup O139.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号