首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hypoxia is linked to changes in blood-brain barrier (BBB) permeability, and loss of BBB integrity is characteristic of many pathological brain diseases including stroke. In particular, astrocytes play a central role in brain homeostasis and BBB function. We investigated how hypoxia affects astrocyte survival and assessed whether VEGF release through hypoxia-inducible factor-1alpha (HIF-1alpha) induction plays a role in tolerance of these cells to insult. Thus primary astrocytes were subjected to normoxic (21% O(2)), hypoxic (1% O(2)), or near-anoxic (<0.1% O(2)) conditions in the presence or absence of glucose. Cell death was significantly initiated after combined oxygen glucose deprivation, and, surprisingly, astrocyte proliferation increased concomitantly. Near anoxic, but not hypoxic, conditions stabilized HIF-1alpha protein and provoked DNA binding activity, whereas oxygen and glucose deprivation accelerated HIF-1alpha accumulation. Unexpectedly, Hif-1alpha knockdown studies showed that elevated VEGF levels following increased insult was only partially due to HIF-1alpha induction, suggesting alternative mechanisms of VEGF regulation. Notably, endogenous VEGF signaling during insult was essential for cell fate since VEGF inhibition appreciably augmented cell death and reduced proliferation. These data suggest Hif-1 only partially contributes to VEGF-mediated astrocyte responses during chronic injury (as occurs in clinical hypoxic/ischemic insults) that may ultimately be responsible for disrupting BBB integrity.  相似文献   

2.
目的:研究叶酸修饰稀土改性载氧碳纳米管在低氧环境下对乳腺癌细胞株放疗敏感性的影响。方法:使用水溶性四唑盐法(WST-1)方法研究叶酸修饰稀土改性载氧碳纳米管对MDA-MB-231细胞与ZR-75-1细胞生长的作用,使用细胞集落形成实验研究其在低氧环境下对无叶酸培养基中MDA-MB-231细胞、有叶酸培养基中MDA-MB-231细胞及ZR-75-1细胞放疗敏感性的影响。利用流式细胞术研究叶酸修饰稀土改性载氧碳纳米管联合放疗干预MDA-MB-231乳腺癌细胞株的凋亡率的改变。利用Western Blot实验观察Bcl-2、survivin、Hif-1α、Rad51及Ku80表达水平的改变。结果:在常氧及低氧环境下,叶酸修饰稀土改性载氧碳纳米管在低于100μg/ml的浓度时对乳腺癌细胞株生长无明显影响。在低氧环境下,放疗联合叶酸修饰稀土改性载氧碳纳米管组相比于单纯放疗组细胞克隆形成率有不同程度的降低,以无叶酸培养基中MDA-MB-231细胞组降低最为明显,照射剂量在2、4、6、8Gy时其细胞克隆形成率均显著降低(P0.05)。流式细胞术显示叶酸修饰稀土改性载氧碳纳米管联合放疗后可使MDA-MB-231乳腺癌细胞株的凋亡率增加。Western Blot实验显示Bcl-2、Survivin、Hif-1α、Rad51及Ku80表达水平均降低。结论:叶酸修饰稀土改性载氧碳纳米管可在体外低氧环境下增强乳腺癌细胞株对放疗的敏感性。  相似文献   

3.
4.
Ma Y  Liang D  Liu J  Axcrona K  Kvalheim G  Stokke T  Nesland JM  Suo Z 《PloS one》2011,6(12):e29170
Hypoxia is an important environmental change in many cancers. Hypoxic niches can be occupied by cancer stem/progenitor-like cells that are associated with tumor progression and resistance to radiotherapy and chemotherapy. However, it has not yet been fully elucidated how hypoxia influences the stem-like properties of prostate cancer cells. In this report, we investigated the effects of hypoxia on human prostate cancer cell lines, PC-3 and DU145. In comparison to normoxia (20% O(2)), 7% O(2) induced higher expressions of HIF-1α and HIF-2α, which were associated with upregulation of Oct3/4 and Nanog; 1% O(2) induced even greater levels of these factors. The upregulated NANOG mRNA expression in hypoxia was confirmed to be predominantly retrogene NANOGP8. Similar growth rates were observed for cells cultivated under hypoxic and normoxic conditions for 48 hours; however, the colony formation assay revealed that 48 hours of hypoxic pretreatment resulted in the formation of more colonies. Treatment with 1% O(2) also extended the G(0)/G(1) stage, resulting in more side population cells, and induced CD44 and ABCG2 expressions. Hypoxia also increased the number of cells positive for ABCG2 expression, which were predominantly found to be CD44(bright) cells. Correspondingly, the sorted CD44(bright) cells expressed higher levels of ABCG2, Oct3/4, and Nanog than CD44(dim) cells, and hypoxic pretreatment significantly increased the expressions of these factors. CD44(bright) cells under normoxia formed significantly more colonies and spheres compared with the CD44(dim) cells, and hypoxic pretreatment even increased this effect. Our data indicate that prostate cancer cells under hypoxia possess greater stem-like properties.  相似文献   

5.
The gastrin-releasing peptide receptor (BB2r) has shown great promise for tumor targeting due to the increase of the receptor expression in a variety of human cancers including prostate, breast, small-cell lung, and pancreatic cancer. From clinical investigations, prostate cancer has been shown to be among the most hypoxic of the cancers investigated. Many solid tumors contain regions of hypoxia due to poor organization and efficiency of the vasculature. However, hypoxia is typically not present in normal tissue. Nitroimidazoles, a thoroughly investigated class of hypoxia selective drugs, have been shown to be highly retained in hypoxic tissues. The purpose of this study is to determine if the incorporation of hypoxia trapping moieties into the structural paradigm of BB2r-targeted peptides will increase the retention time of the agents in prostate cancer tumors. The present work involves the design, syntheses, purification, and in vitro investigation of hypoxia enhanced (111)In-BB2r-targeted radioconjugates. A total of four BB2r-targeted conjugates (1-4) were synthesized and coupled with increasing numbers of 2-nitroimidazoles, a hypoxia trapping moiety. Conjugates were radiolabeled with (111)In and purified by HPLC prior to in vitro studies. Receptor saturation assays under both normoxic and hypoxic conditions showed that the BB2r receptor expression on the PC-3 human prostate cancer cell line was not significantly affected by oxygen levels. Competitive binding assays revealed that incorporation of 2-nitroimidazoles had a detrimental effect to BB2r binding when adequate spacer groups, between the hypoxia trapping agent and the pharmacophore, were not employed. All of the 2-nitroimidazole containing BB2r-targeted agents exhibited significantly higher longitudinal retention in PC-3 cells under hypoxic conditions compared to the analogous normoxic studies. Protein association analysis revealed a 3-fold increase in binding of a 2-nitroimidazole containing BB2r-targeted agent under hypoxic relative to normoxic conditions. The positive nature of these results indicate that further exploration into the potential of hypoxia selective trapping agents for BB2r-targeted agents, as well as other targeted compounds, is warranted.  相似文献   

6.
In general, tumors cells that are resistant to apoptosis and increase angiogenesis are a result of the hypoxic responses contributing to the malignant phenotype. In this study, we developed a chronic hypoxic cell model (HMLL), by incubating the prostate cancer MatLyLu cells in a hypoxic chamber (1% O(2)) over 3 weeks. Surviving cells were selected through each cell passage and were grown in the hypoxic condition up to 8 weeks. This strategy resulted in survival of only 5% of the cells. The surviving hypoxic cells displayed a greater stimulation on hypoxic adaptive response, including a greater expression of glucose transporter1 (Glut1) and VEGF secretion. In addition, higher invasion activity was observed in the chronic hypoxic HMLL cells as compared to MatLyLu cells exposed to acute hypoxia (1% O(2), 5 h) using the matrigel assay. To further examine the role of HIF-1alpha in tumor progression, both MatLyLu and HMLL cells were transfected with dominant-negative form of HIF-1alpha (DNHIF-1alpha). The Matrigel invasion activity induced by chronic hypoxia was significantly attenuated by DNHIF-1alpha. These results suggest that signaling pathways leading to hypoxic response may be differentially regulated in chronic hypoxic cells and acute hypoxic cells. Chronic hypoxia may play a greater role than acute hypoxia in promoting the aggressive phenotype of tumor cells. This observation mimics the clinical scenario where tumor cells following treatment with radiation are subjected to hypoxic conditions. The reemergence of tumor following treatment usually results in tumor cells that are more aggressive and metastatic.  相似文献   

7.
8.
On the basis of increasing roles for HDM2 oncoprotein in cancer growth and progression, we speculated that HDM2 might play a major role in hypoxia-induced metastatic process. For verification of this hypothesis, wild-type LNCaP prostate cancer cells and HDM2 transfected LNCaP-MST (HDM2 stably transfected) cells were studied. The data obtained from our experiments revealed that the HDM2 transfected LNCaP-MST cells possessed an ability to multiply rapidly and show distinct morphological features compared to non-transfected LNCaP cells. During exposures to hypoxia HDM2 expression in the LNCaP and LNCaP-MST cells was significantly higher compared to the normoxic levels. The LNCaP-MST cells also expressed higher levels of HIF-1α (hypoxia-inducible factor-1α) and p-STAT3 even under the normoxic conditions compared to the non-transfected cells. The HIF-1α and p-STAT3 expressions were increased several fold when the cells were subjected to hypoxic conditions. The HIF-1α and p-STAT3 protein expressions observed in HDM2 transfected LNCaP-MST cells were 20 and 15 folds higher, respectively, compared to the non-transfected wild-type LNCaP cells. These results demonstrate that HDM2 may have an important regulatory role in mediating the HIF-1α and p-STAT3 protein expression during both normoxic and hypoxic conditions. Furthermore, the vascular endothelial growth factor (VEGF) expression that is typically regulated by HIF-1α and p-STAT3 was also increased significantly by 136% (P < 0.01) after HDM2 transfection. The overall results point towards a novel ability of HDM2 in regulating HIF-1α and p-STAT3 levels even in normoxic conditions that eventually lead to an up-regulation of VEGF expression.  相似文献   

9.
The receptor tyrosine kinase Axl is overexpressed in a variety of cancers and is known to play a role in proliferation and invasion. Previous data from our laboratory indicate that Axl and its ligand growth arrest-specific 6 (GAS6) may play a role in establishing metastatic dormancy in the bone marrow microenvironment. In the current study, we found that Axl is highly expressed in metastatic prostate cancer cell lines PC3 and DU145 and has negligible levels of expression in a nonmetastatic cancer cell line LNCaP. Knockdown of Axl in PC3 and DU145 cells resulted in decreased expression of several mesenchymal markers including Snail, Slug, and N-cadherin, and enhanced expression of the epithelial marker E-cadherin, suggesting that Axl is involved in the epithelial-mesenchymal transition in prostate cancer cells. The Axl-knockdown PC3 and DU145 cells also displayed decreased in vitro migration and invasion. Interestingly, when PC3 and DU145 cells were treated with GAS6, Axl protein levels were downregulated. Moreover, CoCl(2), a hypoxia mimicking agent, prevented GAS6-mediated downregulation of Axl in these cell lines. Immunochemical staining of human prostate cancer tissue microarrays showed that Axl, GAS6, and hypoxia-inducible factor-1α (Hif-1α; indicator of hypoxia) were all coexpressed in prostate cancer and in bone metastases compared with normal tissues. Together, our studies indicate that Axl plays a crucial role in prostate cancer metastasis and that GAS6 regulates the expression of Axl. Importantly, in a hypoxic tumor microenvironment Axl expression is maintained leading to enhanced signaling.  相似文献   

10.
11.
Recently, we have shown that PFKFB4 gene which encodes the testis isoenzyme of PFKFB is also expressed in the prostate and hepatoma cancer cell lines. Here we have studied expression and hypoxic regulation of the testis isoenzyme of PFKFB4 in several malignant cell lines from a female organ--the mammary gland. Our studies clearly demonstrated that PFKFB4 mRNA is also expressed in mammary gland malignant cells (MCF-7 and T47D cell lines) in normoxic conditions and that hypoxia strongly induces it expression. To better understand the mechanism of hypoxic regulation of PFKFB4 gene expression, we used dimethyloxalylglycine, a specific inhibitor of HIF-1alpha hydroxylase enzymes, which strongly increases HIF-1alpha levels and mimics the effect of hypoxia. It was observed that PFKFB4 expression in the MCF7 and T47D cell lines was highly responsive to dimethyloxalylglycine, suggesting that the hypoxia responsiveness of PFKFB4 gene in these cell lines is regulated by HIF-1 proteins. Moreover, desferrioxamine and cobalt chloride, which mimic the effect of hypoxia by chelating or substituting for iron, had a similar stimulatory effect on the expression of PFKFB mRNA. In other mammary gland malignant cell lines (BT549, MDA-MB-468, and SKBR-3) hypoxia and hypoxia mimics also induced PFKFB4 mRNA, but to variable degrees. The hypoxic induction of PFKFB4 mRNA was equivalent to the expression of PFKFB3, Glut1, and VEGF, which are known HIF-1-dependent genes. Hypoxia and dimethyloxalylglycine increased the PFKFB4 protein levels in all cell lines studied except MDA-MB-468. Through site-specific mutagenesis in the 5'-flanking region of PFKFB4 gene the hypoxia response could be limited. Thus, this study provides evidence that PFKFB4 gene is also expressed in mammary gland cancer cells and strongly responds to hypoxia via an HIF-1alpha dependent mechanism. Moreover, the PFKFB4 and PFKFB3 gene expression in mammary gland cancer cells has also a significant role in the Warburg effect which is found in all malignant cells.  相似文献   

12.
In 10 normal young adults, ventilation was evaluated with and without pretreatment with aminophylline, an adenosine blocker, while they breathed pure O2 1) after breathing room air and 2) after 25 min of isocapnic hypoxia (arterial O2 saturation 80%). With and without aminophylline, 5 min of hyperoxia significantly increased inspiratory minute ventilation (VI) from the normoxic base line. In control experiments, with hypoxia, VI initially increased and then declined to levels that were slightly above the normoxic base line. Pretreatment with aminophylline significantly attenuated the hypoxic ventilatory decline. During transitions to pure O2 (cessation of carotid bodies' output), VI and breathing patterns were analyzed breath by breath with a moving-average technique, searching for nadirs before and after hyperoxia. On placebo days, at the end of hypoxia, hyperoxia produced nadirs that were significantly lower than those observed with room-air breathing and also significantly lower than when hyperoxia followed normoxia, averaging, respectively, 6.41 +/- 0.52, 8.07 +/- 0.32, and 8.04 +/- 0.39 (SE) l/min. This hypoxic depression was due to significant decrease in tidal volume and prolongation of expiratory time. Aminophylline partly prevented these alterations in breathing pattern; significant posthypoxic ventilatory depression was not observed. We conclude that aminophylline attenuated hypoxic central depression of ventilation, although it does not affect hyperoxic steady-state hyperventilation. Adenosine may play a modulatory role in hypoxic but not in hyperoxic ventilation.  相似文献   

13.
14.
Tumor hypoxia presents an obstacle to the effectiveness of most antitumor therapies, including treatment with oncolytic viruses. In particular, an oncolytic virus must be resistant to the inhibition of DNA, RNA, and protein synthesis that occurs during hypoxic stress. Here we show that vesicular stomatitis virus (VSV), an oncolytic RNA virus, is capable of replication under hypoxic conditions. In cells undergoing hypoxic stress, VSV infection produced larger amounts of mRNA than under normoxic conditions. However, translation of these mRNAs was reduced at earlier times postinfection in hypoxia-adapted cells than in normoxic cells. At later times postinfection, VSV overcame a hypoxia-associated increase in alpha subunit of eukaryotic initiation factor 2 (eIF-2alpha) phosphorylation and initial suppression of viral protein synthesis in hypoxic cells to produce large amounts of viral protein. VSV infection caused the dephosphorylation of the translation initiation factor eIF-4E and inhibited host translation similarly under both normoxic and hypoxic conditions. VSV produced progeny virus to similar levels in hypoxic and normoxic cells and showed the ability to expand from an initial infection of 1% of hypoxic cells to spread through an entire population. In all cases, virus infection induced classical cytopathic effects and apoptotic cell death. When VSV was used to treat tumors established in nude mice, we found VSV replication in hypoxic areas of these tumors. This occurred whether the virus was administered intratumorally or intravenously. These results show for the first time that VSV has an inherent capacity for infecting and killing hypoxic cancer cells. This ability could represent a critical advantage over existing therapies in treating established tumors.  相似文献   

15.
Deregulated c-Myc occurs in ~30% of human cancers. Similarly, hypoxia- inducible factor (HIF) is commonly overexpressed in a variety of human malignancies. Under physiologic conditions, HIF inhibits c-Myc activity; however, when deregulated oncogenic c-Myc collaborates with HIF in inducing the expression of VEGF, PDK1, and hexokinase 2. Most of the knowledge of HIF derives from studies investigating a role of HIF under hypoxic conditions, however, HIF-1α stabilization is also found in normoxic conditions. Specifically, under hypoxic conditions Hif-1- mediated regulation of oncogenic c-Myc plays a pivotal role in conferring metabolic advantages to tumor cells as well as adaptation to the tumorigenic micromilieu. In addition, our own results show that under normoxic conditions oncogenic c-Myc is required for constitutive high Hif-1 protein levels and activity in Multiple Myeloma (MM) cells thereby influencing VEGF secretion and angiogenic activity within the bone marrow microenvironment. Further studies are needed to delineate the functional relevance of HIF, MYC, and the HIF-MYC collaboration in MM and other malignancies, also integrating the tumor microenvironment and the cellular context. Importantly, first studies already demonstrate promising preclinical results of novel agents, predominantly small molecules, which target c-Myc, HIF or both.  相似文献   

16.
Quercetin, a ubiquitous bioactive plant flavonoid, has been shown to inhibit the proliferation of cancer cells and induce the accumulation of hypoxia-inducible factor-1alpha (HIF-1alpha) in normoxia. In this study, under hypoxic conditions (1% O(2)), we examined the effect of quercetin on the intracellular level of HIF-1alpha and extracellular level of vascular endothelial growth factor (VEGF) in a variety of human cancer cell lines. Surprisingly, we observed that quercetin suppressed the HIF-1alpha accumulation during hypoxia in human prostate cancer LNCaP, colon cancer CX-1, and breast cancer SkBr3 cells. Quercetin treatment also significantly reduced hypoxia-induced secretion of VEGF. Suppression of HIF-1alpha accumulation during treatment with quercetin in hypoxia was not prevented by treatment with 26S proteasome inhibitor MG132 or PI3K inhibitor LY294002. Interestingly, hypoxia (1% O(2)) in the presence of 100 microM quercetin inhibited protein synthesis by 94% during incubation for 8 h. Significant quercetin concentration-dependent inhibition of protein synthesis and suppression of HIF-1alpha accumulation were observed under hypoxic conditions. Treatment with 100 microM cycloheximide, a protein synthesis inhibitor, replicated the effect of quercetin by inhibiting HIF-1alpha accumulation during hypoxia. These results suggest that suppression of HIF-1alpha accumulation during treatment with quercetin under hypoxic conditions is due to inhibition of protein synthesis.  相似文献   

17.
18.
19.
20.
Mechanisms that induce the excessive proliferation of vascular wall cells in hypoxic pulmonary hypertension (PH) are not fully understood. Alveolar hypoxia causes sympathoexcitation, and norepinephrine can stimulate alpha(1)-adrenoceptor (alpha(1)-AR)-dependent hypertrophy/hyperplasia of smooth muscle cells and adventitial fibroblasts. Adrenergic trophic activity is augmented in systemic arteries by injury and altered shear stress, which are key pathogenic stimuli in hypoxic PH, and contributes to neointimal formation and flow-mediated hypertrophic remodeling. Here we examined whether norepinephrine stimulates growth of the pulmonary artery (PA) and whether this is augmented in PH. PA from normoxic and hypoxic rats [9 days of 0.1 fraction of inspired O(2) (Fi(O(2)))] was studied in organ culture, where wall tension, Po(2), and Pco(2) were maintained at values present in normal and hypoxic PH rats. Norepinephrine treatment for 72 h increased DNA and protein content modestly in normoxic PA (+10%, P < 0.05). In hypoxic PA, these effects were augmented threefold (P < 0.05), and protein synthesis was increased 34-fold (P < 0.05). Inferior thoracic vena cava from normoxic or hypoxic rats was unaffected. Norepinephrine-induced growth in hypoxic PA was dose dependent, had efficacy greater than or equal to endothelin-1, required the presence of wall tension, and was inhibited by alpha(1A)-AR antagonist. In hypoxic pulmonary vasculature, alpha(1A)-AR was downregulated the least among alpha(1)-AR subtypes. These data demonstrate that norepinephrine has trophic activity in the PA that is augmented by PH. If evident in vivo in the pulmonary vasculature, adrenergic-induced growth may contribute to the vascular hyperplasia that participates in hypoxic PH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号