首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The role of accessory cell populations in the generation of effector suppressor (Ts3) cells was studied. By using an in vitro culture system, it was previously determined that the induction of NP-specific effector suppressor activity requires T cells, antigen, and an anti-idiotypic B cell population. We now demonstrate that the generation of Ts3 cells in this system also requires accessory cells. The accessory population appears to play a role in the processing and presentation of antigen. These antigen-presenting accessory cells are required early in the induction phase of Ts3 generation. These accessory cells can present NP coupled to immunogenic or non-immunogenic polypeptide carriers, including polymers of L-amino acids. However, NP coupled to polymers of poorly metabolized D-amino acids fail to induce suppressor T cell generation. Furthermore, the data demonstrate that an H-2 homology must exist between the Ts3 precursors and the antigen-presenting cell population if suppressor activity is to be generated. We also characterize the differential genetic restrictions that govern the induction of Ts3 cells that control suppression of either T cell or B cell responses. The data suggest that although I-J region encoded gene products control the induction and effector phases of suppressor cell activity as measured on T cell responses, the suppression of B cell responses appear to be controlled by I-A gene products. Possible cellular mechanisms that might explain these findings are discussed.  相似文献   

2.
Previous studies of the immune response of C57BL/6 mice to the 4-hydroxy-3-nitrophenyl acetyl (NP) hapten determined that challenge with antigenic forms of hapten induces both immunity and suppression. The anti-NP plaque-forming cell response can be down regulated by an Ag-induced cascade consisting of three suppressor T cell subsets. These three populations, termed Ts1, Ts2, and Ts3 have been characterized to have inducer, transducer and effector functions, respectively. Although the functions of each of these subsets have been examined in vivo, the cellular requirements for in vitro Ts induction have only been investigated for the Ts3 population. The present study characterizes the cellular events that lead to the induction of the Ts2, suppressor transducer population. Culture of naive C57BL/6 spleen cells with Ts1-derived suppressor factor in the absence of exogenous Ag leads to the generation of Ts2 cells that mediate Ag-specific suppression of NP plaque-forming cell responses. Phenotypic analyses demonstrate that a CD3+, CD4-, CD5+, CD8+, and I-J+ precursor population is stimulated by TsF1 to become mature Ts2 cells that express CD3, CD8, and I-J but not CD5. Although previous studies have reported an essential role for B cells in the induction of other Ts populations, depletion of B cells from Ts2 induction cultures had no effect on Ts2 generation. Despite the absence of B cells in these cultures, the mature Ts2 cells were functionally IgH restricted. Studies with IgH congenic B.C-8 mice suggest that this restriction specificity was imposed by the idiotype-related determinants expressed on the TsF1, not the T cell genotype.  相似文献   

3.
Anti-idiotypic B cells are required for the induction of suppressor T cells   总被引:1,自引:0,他引:1  
A nylon wool-adherent, B cell-enriched population is required during the in vitro induction of third order effector suppressor T cells (Ts3). This B cell population expresses IgM and IgD and is devoid of conventional T cell markers such as Thy-1, L3T4, and Lyt-1. Treatment of the B cell population with anti-NP antibodies expressing the NPb idiotype and complement specifically eliminated the ability to generate Ts cell activity, suggesting that the critical B cells expressed anti-idiotypic receptors. To independently verify the role of anti-idiotypic B cells in the generation of Ts cells, B cells were panned on antibody-coated plates. The results demonstrated that only NPb idiotype-binding B cells could induce effector suppressor cells from naive T cell populations. The combined data demonstrate the role of Ig network interactions in the generation of Ts cells.  相似文献   

4.
A monoclonal antibody (mAb), B16G, was raised from BALB/c mice immunized with affinity-purified T suppressor factors (TsF) specific for the murine mastocytoma P815. This mAb was found to bind to polyclonal TsF isolated from the spleens of tumor-bearing animals, and to the TsF released from a P815-specific T cell hybridoma. In this study, B16G was tested for its reactivity with TsF produced in the 4-hydroxy-3-nitrophenyl acetyl hapten system. The factors from three types of suppressor T cell hybridomas, each representing the immortalized analogues of the inducer T suppressor cell (Ts1), transducer suppressor cell (Ts2), and effector suppressor cell (Ts3) network populations, were tested. B16G was found to be reactive with two sources of TsF1 as assayed by enzyme-linked immunosorbent assay and delayed-type hypersensitivity bioassay. By contrast, TsF2 and TsF3 were nonreactive with B16G. These results indicate that B16G recognizes class-specific suppressor factor determinants, and that the transducer/effector factors of the network are apparently serologically distinct. Because the B16G mAb fails to recognize 4-hydroxy-3-nitro-phenyl acetyl-specific TsF3 that share idiotype-related determinants with TsF1 yet binds to TsF1 molecules that have interacted with antigen, the binding is apparently independent of the site of antigen recognition. Additionally, the results show that the tumor-specific TsF1 raised in one suppressor system share serologic determinants with anti-hapten TsF1 raised in another.  相似文献   

5.
It has been suggested that macrophage-like accessory cells are involved in suppressor T cell (Ts) induction. To further analyze this issue, we obtained several cloned macrophage hybridoma cell lines by somatic cell fusion of the macrophage tumor P388D1 of DBA/2 (H-2d) origin with splenic adherent cells of CKB mice (H-2k). Several cloned lines displayed the serological and functional characteristics of macrophages. We evaluated the ability of these hybridomas to induce third order or effector Ts (Ts3) to suppress the contact sensitivity response against the hapten 4-hydroxy-3-nitrophenyl acetyl (NP). In contrast to the parental P388D1 and two other macrophage hybridomas, one macrophage hybridoma clone, termed 63, when conjugated with NP, induced Ts3, which suppressed contact sensitivity responses against NP but not DNFB, showing that the Ts3 were antigen specific. Macrophage hybridoma 63 could specifically induce Ts3 activity in either H-2k, H-2d, or H-2k/H-2d heterozygous hosts. Thus, macrophage hybridoma 63 functionally expressed major histocompatibility complex-related restricting determinants, and the fusion with cells from a H-2k macrophage donor caused a functional complementation of H-2d-related, Ts-inducing elements. The genetic restriction governing induction of Ts3 was controlled by genes that mapped to I-J region. Furthermore, NP-conjugated macrophage hybridoma 63 could serve as a target for elicitation of suppressor responses after administration of I-Jk, but not I-Jb, restricted suppressor factor. The data suggest that macrophage hybridomas represent a means to dissect heterogeneity within the macrophage population. The data also imply that the I-J determinants expressed on macrophages represent a ligand for the antigen receptor of Ts.  相似文献   

6.
The cellular requirements for the in vitro induction of antigen-specific suppressor T cells were examined. Previous reports indicated that Ia-bearing macrophages and anti-idiotypic B cells are required as accessory cells to facilitate the generation of suppressor effector (TS3) cells which regulate the response to the 4-hydroxy-3-nitrophenyl acetyl (NP) hapten. The present study describes two distinct T cell populations which interact to generate antigen-specific TS3. Fractionation of the T cell populations with monoclonal antibody to the L3T4 determinant led to the identification of an NP-specific L3T4- TS3 progenitor population and an L3T4+ helper/inducer subset. In the presence of NP-coupled antigen, the L3T4+ subset could induce progenitor TS3 to differentiate into mature TS3 cells. The activity of the L3T4+ inducer population could be replaced with specifically activated cloned helper cells which were not NP-reactive since an I-Ab-restricted, insulin-reactive, L3T4+ clone was capable of supporting the generation of NP-specific TS3. Inducer activity appeared to be confined to the Th1 but not the Th2 subset. In addition, 18-hr supernatants from antigen-activated clones were capable of substituting for L3T4+ cells or T cell clones in TS3 induction cultures. The TS maturation/differentiation factor(s) active in these supernatants does not appear to be IL-1, IL-2, IL-3, or interferon-gamma alone since purified sources of these lymphokines failed to induce TS3 activity.  相似文献   

7.
Hapten-coupled splenic adherent cells or resident peritoneal cells from autoimmune B6.lpr mice that are over 5 mo of age fail to induce first-order inducer suppressor T cells (Ts1). However, the same population of hapten-coupled cells can induce both delayed-type hypersensitivity responses and third-order effector suppressor T cells (Ts3). Thus, splenic and peritoneal antigen-presenting cells from B6.lpr mice display a defined defect in the ability to induce certain suppressor T cell responses. The cellular defect in Ts1 induction is controlled by the lpr gene, since age-matched congenic B6 mice do not display this defect. The splenic adherent cell defect is temporarily correlated with the autoimmunity that develops in B6.lpr animals. The antigen-presenting defect in the B6.lpr splenic adherent population for Ts1 induction is reversible by culturing the cells in interferon-gamma. The results are discussed as an illustration of the relationship between experimental models of autoimmunity and defects in a suppressor T cell cascade.  相似文献   

8.
The induction and fine specificity of idiotype-specific suppressor T cells (Tsid) were studied. Spleen cells from C57BL/6 mice, immunized 4 wk previously with NP-KLH, failed to express NPb3 idiotype-bearing PFC when challenged in vitro with NP-Ficoll or NP-Brucella abortus. After treatment of NP-primed responder cultures with anti-Thy-1.2 anti-serum + C, NPb idiotype-bearing B cells could be detected. This B cell subset was preferentially suppressed by the addition of T cells from NP-primed mice. With this reconstitution protocol, it was determined that suppression of the NPb idiotype-bearing portion of the B cell response was mediated by a specifically induced T cell population (Tsid) that directly suppressed NPb-bearing B cells. As with a previously described suppressor population induced with hapten-modified syngeneic spleen cells (Ts2), the Tsid population bound and was lysed by NPb idiotype-bearing serum antibodies. However, the Tsid could be distinguished from the Ts2 population because it lacked I-J determinants and functioned as an effector T cell, not an intermediary suppressor cell. Furthermore, fine specificity studies with monoclonal NP-specific antibodies expressing various levels of serologically detectable NPb idiotypic determinants indicated that unlike the Ts2, the Tsid population reacts with conventional, serologically detected members of the NPb family. The combined idiotype binding studies for the Tsid and Ts2 populations demonstrate that the fine specificity of suppressor T cell populations reflects their independent mechanisms of regulation.  相似文献   

9.
We have previously shown that a single i.p. injection of the monovalent synthetic antigen, L-tyrosine-p-azophenyltrimethylammonium [tyr(TMA)] in complete Freund's adjuvant induces an anti-idiotypic T suppressor cell (Ts2) population that can be detected 6 wk later by its ability to shut down delayed-type hypersensitivity (DTH) specific for the TMA hapten. In this paper we present evidence that 2 wk after tyr(TMA) administration, a subset of Ts, termed Ts1, appears that is both functionally and phenotypically distinct from the late appearing Ts2 population. The early occurring Ts1 act only at the induction phase of the DTH response and can also suppress this response intrinsically. This latter point is in marked contrast to our previous observation that the tyr(TMA)-induced anti-idiotypic Ts2 fail to function intrinsically and can only be detected upon adoptive transfer into naive mice. Ts1 bear idiotypic receptors and are Ly-1+,2- in contrast to the anti-idiotypic Ly-1-,2+ Ts2 population. In addition, unlike the Ts2 population, Ts1 are comparatively nylon wool-adherent. Adsorption of Ts1 on either antigen- or idiotype-coated petri dishes indicate that the suppressor activity can be transferred only by antigen-binding cells. Cellfree factors prepared from spleens containing the Ts1 population can suppress DTH only if administered at the induction phase of the response, in contrast to the factors derived from the Ts2 population that act both at induction as well as effector phases, suggesting that Ts1 and Ts2 can function via soluble mediators. Finally, we show that when Ts1-bearing mice are primed and boosted for anti-TMA antibody formation, the resulting response was overall reduced with respect to the idiotype-positive and negative plaque-forming cells that differs from the Ts2-bearing hosts wherein the idiotypic component is preferentially suppressed. The appearance of Ts1 before the detection of Ts2 in the same experimental animals is discussed with reference to a normal physiologic sequence of events involved in suppressor pathways.  相似文献   

10.
The T suppressor (Ts) cell population that functions to regulate antigen-specific MHC-restricted T helper (Th)-B cell interactions also regulates the activation of B cells by cloned autoreactive Th cells. Activated Ts cells were generated by in vivo priming and restimulation in vitro with high concentrations of the specific priming antigen. Once generated, this Ts population inhibits the Th-dependent activation of primed B cells by both antigen-specific and autoreactive T cells in an antigen-nonspecific manner. This suppression requires the participation of both Lyt-1+2- and Lyt-1-2+ T cells. It was also demonstrated that accessory cells were required for the induction of Ts cells. Moreover, the generation of suppression was MHC-restricted and required the recognition by T cells of Ia antigens on accessory cells. These studies demonstrate that the same or a very similar Ts cell population can function to inhibit the activation of B cells by antigen-specific as well as autoreactive T cells.  相似文献   

11.
The interaction between the third-order T suppressor (Ts3) cell and the idiotype (Id)-specific second-order Ts factor (TsF2) was studied in the phenyltrimethylamino (TMA) hapten system. The experimental system which we used allowed the independent analysis of induction and activation requirements of Ts3. The procedure consisted of inducing the Ts3 in vivo and activating the enriched T-cell populations containing Ts3 in vitro with TsF2. The suppressive potential was then tested in mice previously primed for delayed-type hypersensitivity responses which were also treated with cyclophosphamide to deplete Ts3 and other drug-sensitive Ts cell types. Using this experimental system, it was found that the Id-specific TsF2 was required for the in vitro activation of Ts3. Furthermore, the TsF2 activated only the homologous and not heterologous antigen-primed Ts3-containing T cells and moreover, the target of TsF2 was found to be the Ts cells bearing hapten-specific receptors. Once the TMA hapten-specific Ts3 was activated with TsF2, the ensuing suppression was antigen nonspecific. The data demonstrate that the Ts3 represents a final effector Ts cell type in the TMA system.  相似文献   

12.
Spleen cells from CAF1 mice made tolerant to type III pneumococcal polysaccharide (S3) with S3 coupled to syngeneic spleen cells (S3-SC) develop S3-specific suppressor T cells (Ts). These Ts could be demonstrated consistently only when spleen cells from tolerant mice were cultured in vitro with the specific antigen and the specific tolerogen. Spleen cells from normal mice cultured under the same conditions did not suppress the antibody response to S3. When different numbers of Ts were transferred to normal CAF1 mice, an unusual dose-effect pattern was observed. Maximal suppression of the S3 response occurred when relatively low numbers of Ts, 3 to 30 x 10(5) per recipient, were transferred, whereas larger numbers of cells, 150 x 10(5) per recipient, were not suppressive. These results indicate that a presumably T-independent antigen, S3, can activate antigen-specific Ts. These Ts exhibit unusual dose effects upon transfer and require both an in vivo induction period and in vitro activation for development of maximal activity. These latter observations suggest that S3 may activate a different population of T cells with suppressor function than do conventional T-dependent antigens. The loss of suppression observed when greater than optimal numbers of cells were transferred suggests that a second type of T cell, which has the ability to 'neutralize' the activity of S3-specific Ts, is also induced in the same spleen cell population.  相似文献   

13.
Earlier studies in the phenyltrimethylamino (TMA) hapten system demonstrated that under certain conditions idiotype-specific second-order T suppressor (Ts2)-bearing mice fail to suppress TMA-specific delayed-type hypersensitivity. This was due to a functional deletion in the third-order T suppressor (Ts3) subset. In this report we have confirmed and extended these findings to show that only homologous TMA-specific Ts3 can restore suppressor function, both heterologous Ts3 and unprimed T-cell populations failed to do so. Furthermore, attempts to induce Ts3 function in the defective mice after reconstitution with normal precursor Ts3 cells also failed. In contrast, protocols which induce heterologous contact and cutaneous hypersensitivity reactions readily induced cell populations capable of restoring suppression in the Ts3-defective mice. Analysis of the lymphoid populations from the contact-sensitized defective mice revealed that these cells were not the prototypical Ts3 but were similar to the previously reported nonspecific T acceptor cell. The results further indicated that the T acceptor cell functioned as the active terminal-phase Ts subset, and this could be used as an alternative to the TMA-specific Ts3. The importance of multiple suppressor pathways at the terminal phase of immune suppression is discussed.  相似文献   

14.
The ability of the idiotype (Id)-specific second-order T suppressor factor (TsF2) to interact with a final effector Ts cell type other than the previously reported third-order Ts (Ts3) subset was studied in the phenyltrimethylamino (TMA) hapten system. Hence, mice were primed with unrelated heterologous haptens to induce the nonspecific T acceptor (Tacc) cells following published procedures. When enriched T cell populations containing these nonspecific Ts were briefly incubated in vitro with TMA-TsF2, they produced suppression upon adoptive transfer into cyclophosphamide-treated mice which had been previously immunized for TMA-specific delayed-type hypersensitivity. Despite the fact that the effector population studied in this report also required Id-binding TsF2 for its function, it differs markedly from the Ts3 subset studied previously in the TMA system. First, the cell type studied herein could be easily generated with noncrossreacting heterologous chemically reactive haptens when applied directly to the skin of mice. Furthermore, these Ts effector cells had no detectable intrinsic receptors for homologous haptens and most importantly, unlike Ts3, this population had no affinity for the TMA hapten. Nevertheless, the nonspecifically induced Ts once activated by TsF2 suppresses TMA-directed, but not similar immune responses specific for heterologous haptens. Thus the results indicate that TsF2 can functionally interact with a final effector Ts subset (very similar to the Tacc) other than the well described Ts3 population. The ramifications of these findings are discussed with reference to a generalized view of the cellular basis of terminal phases of immune suppression.  相似文献   

15.
The ability of UV-treated splenic adherent cells (SAC) to induce T cell-mediated immunity and suppressor T cells was analyzed in the 4-hydroxy-3-nitrophenyl acetyl (NP) system. UV irradiation of 0.88 KJ/m2 decreased the capacity of NP-coupled SAC to induce delayed-type hypersensitivity (DTH) responses by about 50%. The ability of uncoupled UV-treated SAC to induce allogeneic DTH response was also imparied, indicating that UV-treated SAC are inefficient at inducing DTH in these systems. TS1 induction by UV-treated NP-SAC was evaluated TS1 induction by UV-treated NP-SAC was evaluated by using adherent cells that were subjected to the same dose of UV irradiation that impaired DTH induction. Intravenous administration of 10(3) or 10(4) UV-treated NP-coupled SAC induced TS1 cells with the same efficiency as non-UV-irradiated cells. The TS1 cells induced in this fashion were antigen specific. Furthermore, to establish that the antigen was not reprocessed by the host, I-J-mismatched, UV-treated NP-SAC were unable to induce TS1 cells. The population of antigen-presenting cells responsible for TS1 induction appear to express both I-A and I-J determinants. TS2 induction by UV-treated accessory cells was also analyzed. TSF1 inducer suppressor factor was pulsed onto graded numbers of either normal or UV-treated adherent cells. The same levels of antigen-specific suppression were induced with normal and UV-treated cells. Finally, TS3 induction by UV-treated NP-SAC was analyzed. UV-treated and normal NP-SAC (3 X 10(3] induced antigen-specific suppression of NP DTH responses. I-J-mismatched, UV-treated NP-SAC failed to induce suppression, suggesting that the hapten was not reprocessed by the host under these experimental conditions. The accessory cell population responsible for TS3 induction appears to express both I-A and I-J determinants. Thus, there are at least two functional distinctions between the antigen-presenting cells that induce immunity vs those that induce suppressor cells. First, UV treatment selectively impairs the antigen-presenting cells, which activate the positive limb of the immune response. Second, I-J determinants appear to be specifically associated with the SAC, which induce suppressor T cells. Although these criteria can be used to distinguish the accessory cells involved in suppressor cell pathways from those controlling helper T cell induction, there were no discernible phenotypic differences among the accessory cells that induce the TS1, TS2, and TS3 subsets.  相似文献   

16.
Specific tolerance to phosphorylcholine (PC) can be induced in BALB/c mice by neonatal injection with either pneumococcal C-polysaccharide (PnC) containing PC or anti-TEPC-15 idiotype (T15id) antibody which recognizes the predominant idiotype of anti-PC antibody of BALB/c mice. Suppressor T cells (Ts) induced after treatment with anti-T15id antibody react with the T15id and PnC-induced Ts cells appear to recognize PC. A brief incubation of anti-id-induced, T15id-specific Ts with PnC-induced, PC-reactive Ts resulted in complete cancellation of their suppressor functions. However, both types of Ts were present in mice neonatally injected with mixtures of PnC and anti-T15id antibody. Neutralization experiments using either PnC-induced or anti-id-induced suppressor T cells strongly suggest that only one of the Ts cell types is functionally dominant in those mice: most frequently, T15id-specific Ts cells. The suppressor function of the other population is detectable only when the predominant Ts cell population is removed by anti-id or monoclonal IgM anti-PC (SP45) plus complement. However, both suppressor activities are completely eliminated when one of the Ts populations is removed by adherence to either antigen or T15id. These results suggest that mice neonatally injected with a mixture of antigen and anti-id antibody possess both types of suppressor T cells, yet only one type is functionally dominant.  相似文献   

17.
Immune B cells induce effector T suppressor cells in vitro. The B cells act as antigen-presenting cells, and express both I-A and I-J determinants. Antigen and I-J determinants are required for the induction of suppressor T cells by immune B cells, but I-A determinants are not. These findings indicate that precursors of suppressor T cells appear to recognize antigen in the context of I-J determinants on the surface of immune B cells.  相似文献   

18.
Optimally immunogenic amounts of type III pneumococcal polysaccharide (S3) activate a population of contrasuppressor T cells (Tcs), which have been shown to play an important role in the induction of anti-S3 antibody responses. These Tcs belong to a unique T cell subset that has the surface phenotype Lyt 1+2- L3T4- I-J+ I-A+. These Tcs are also cyclophosphamide (Cy)-sensitive and sensitive to antilymphocyte serum (ALS) and mitomycin C. Tcs have antigen-binding receptors, indicating that any interactions of Tcs with B cells or T suppressor cells (Ts) (both of which also have antigen-binding receptors) must be via an antigen bridge rather than an idiotype-anti-idiotype interaction. Tcs are also Igh restricted in their action. Contrasuppression is manifest only when the Tcs are Igh compatible with both the Ts and the responding B cells. Tcs apparently mediate their effects by releasing a soluble factor, since a soluble factor extracted from Tcs is able to abrogate the effects of S3-specific Ts.  相似文献   

19.
Intravenous administration of hapten-coupled, high-density (density greater than 1.077) epidermal cells (HD-EC) to mice results in the appearance of transferable splenic T suppressor (Ts) cells as assayed in adoptive transfer experiments. Depletion of I-A bearing cells from the HD-EC population before hapten coupling prevents these cells from inducing Ts cell formation, whereas depletion of Thy-1-bearing cells from the HD-EC cell preparation has no effect. When HD-EC are adhered to glass for 2 hr, the ability to induce Ts cell formation resides in the adherent population. Exposure of HD-EC to a dose of ultraviolet radiation (UVR) that largely abrogates the ability of hapten-coupled EC to immunize mice for a DTH response does not affect the ability of these cells to activate Ts cells. Treatment of mice with i.p. administration of 20 mg/kg of cyclophosphamide 2 days before EC harvesting abrogates the ability of HD-EC from these mice to induce Ts cell formation. HD-EC from B10.A(3R) (I-Jb) but not B10.A(5R) (I-Jk) mice induce Ts cell formation in B10.A(3R) mice, demonstrating that the ability to do so is restricted by the I-J locus. Transmission electron microscopy of adherent HD-EC populations demonstrated that two cell types were present. One type had the characteristics of keratinocytes; the other was monocyte-like and resembled Langerhans cells or indeterminate cells in many aspects. Immunoelectron microscopy revealed this second cell type to bear I-A/I-E antigen. These cells were T-200 positive and Mac-1 negative by immunoperoxidase staining. Extensive examination by light and electron microscopy failed to reveal any dermal components in the EC populations; however, a very small degree of dermal contamination cannot be excluded. Thus, EC that activate afferent-acting Ts cells are high-density, I-A+, Thy-1-, I-J restricted, glass adherent, and functionally UVR resistant and cyclophosphamide sensitive.  相似文献   

20.
An infectious center viral plaque assay has been utilized to quantitate activated T suppressor (Ts) cells. This assay is based on two observations. Namely, resting T cells do not serve as good replicative hosts for many viruses, including vesicular stomatitis virus (VSV), and that Ts cells can be enriched by their ability to bind to antigen-coated dishes. Our data show that Ts cells specific for either the TNP hapten or for dextran will replicate VSV upon antigenic and/or mitogenic activation, whereas resting Ts and hapten-specific B cells are less efficient in this process. This system will now allow the direct quantitation of Ts cells and their activation properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号