首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bacterioplankton community of confined seawater at 25 degrees C changed significantly within 16 h of collection. Confinement increased CFU, total cell number (by epifluorescence microscopy), and average cell volume of bacterioplankton and increased the turnover rate of amino acids in seawater sampled at Frying Pan Shoals, N.C. The bacterioplankton community was characterized by two components: differential doubling times during confinement shifted dominance from bacteria which were nonculturable to bacteria which were culturable on a complex nutrient medium. Culturable cells (especially those of the genera Pseudomonas, Alcaligenes, and Acinetobacter) increased from 0.08% of the total cell number in the seawater immediately after collection to 13% at 16 h and 41% at 32 h of confinement. Differential filtration before confinement indicated that particles passing through a 3.9-microns-, but retained by a 0.2-micron-, pore-size Nuclepore filter may be a major source of primary amines to the confined population. The 3.0-microns filtration increased growth rate and ultimate numbers of culturable cells through the removal of bacterial predators or the release of primary amines from cells damaged during filtration or both.  相似文献   

2.
The culturability of abundant members of the domain Bacteria in North Sea bacterioplankton was investigated by a combination of various cultivation strategies and cultivation-independent 16S rRNA-based techniques. We retrieved 16S rRNA gene (rDNA) clones from environmental DNAs and determined the in situ abundance of different groups and genera by fluorescence in situ hybridization (FISH). A culture collection of 145 strains was established by plating on oligotrophic medium. Isolates were screened by FISH, amplified ribosomal DNA restriction analysis (ARDRA), and sequencing of representative 16S rDNAs. The majority of isolates were members of the genera Pseudoalteromonas, Alteromonas, and Vibrio. Despite being readily culturable, they constituted only a minor fraction of the bacterioplankton community. They were not detected in the 16S rDNA library, and FISH indicated rare (<1% of total cell counts) occurrence as large, rRNA-rich, particle-associated bacteria. Conversely, abundant members of the Cytophaga-Flavobacteria and gamma proteobacterial SAR86 clusters, identified by FISH as 17 to 30% and up to 10% of total cells in the North Sea bacterioplankton, respectively, were cultured rarely or not at all. Whereas SAR86-affiliated clones dominated the 16S rDNA library (44 of 53 clones), no clone affiliated to the Cytophaga-Flavobacterum cluster was retrieved. The only readily culturable abundant group of marine bacteria was related to the genus Roseobacter. The group made up 10% of the total cells in the summer, and the corresponding sequences were also present in our clone library. Rarefaction analysis of the ARDRA patterns of all of the isolates suggested that the total culturable diversity by our method was high and still not covered by the numbers of isolated strains but was almost saturated for the gamma proteobacteria. This predicts a limit to the isolation of unculturable marine bacteria, particularly the gamma-proteobacterial SAR86 cluster, as long as no new techniques for isolation are available and thus contrasts with more optimistic accounts of the culturability of marine bacterioplankton.  相似文献   

3.
Culturability and In situ abundance of pelagic bacteria from the North Sea   总被引:19,自引:0,他引:19  
The culturability of abundant members of the domain Bacteria in North Sea bacterioplankton was investigated by a combination of various cultivation strategies and cultivation-independent 16S rRNA-based techniques. We retrieved 16S rRNA gene (rDNA) clones from environmental DNAs and determined the in situ abundance of different groups and genera by fluorescence in situ hybridization (FISH). A culture collection of 145 strains was established by plating on oligotrophic medium. Isolates were screened by FISH, amplified ribosomal DNA restriction analysis (ARDRA), and sequencing of representative 16S rDNAs. The majority of isolates were members of the genera Pseudoalteromonas, Alteromonas, and Vibrio. Despite being readily culturable, they constituted only a minor fraction of the bacterioplankton community. They were not detected in the 16S rDNA library, and FISH indicated rare (<1% of total cell counts) occurrence as large, rRNA-rich, particle-associated bacteria. Conversely, abundant members of the Cytophaga-Flavobacteria and gamma proteobacterial SAR86 clusters, identified by FISH as 17 to 30% and up to 10% of total cells in the North Sea bacterioplankton, respectively, were cultured rarely or not at all. Whereas SAR86-affiliated clones dominated the 16S rDNA library (44 of 53 clones), no clone affiliated to the Cytophaga-Flavobacterum cluster was retrieved. The only readily culturable abundant group of marine bacteria was related to the genus Roseobacter. The group made up 10% of the total cells in the summer, and the corresponding sequences were also present in our clone library. Rarefaction analysis of the ARDRA patterns of all of the isolates suggested that the total culturable diversity by our method was high and still not covered by the numbers of isolated strains but was almost saturated for the gamma proteobacteria. This predicts a limit to the isolation of unculturable marine bacteria, particularly the gamma-proteobacterial SAR86 cluster, as long as no new techniques for isolation are available and thus contrasts with more optimistic accounts of the culturability of marine bacterioplankton.  相似文献   

4.
Enrichment experiments with North Sea bacterioplankton were performed to test if rapid incubation-induced changes in community structure explain the frequent isolation of members of a few particular bacterial lineages or if readily culturable bacteria are common in the plankton but in a state of dormancy. A metabolic inhibitor of cell division (nalidixic acid [NA]) was added to substrate-amended (S+) and unamended (S−) grazer-free seawater samples, and shifts in community composition and per cell DNA and protein content were compared with untreated controls. In addition, starvation survival experiments were performed on selected isolates. Incubations resulted in rapid community shifts towards typical culturable genera rather than in the activation of either dormant cells or the original DNA-rich bacterial fraction. Vibrio spp. and members of the Alteromonas/Colwellia cluster (A/C) were selectively enriched in S+ and S−, respectively, and this trend was even magnified by the addition of NA. These increases corresponded with the rise of cell populations with distinctively different but generally higher protein and DNA content in the various treatments. Uncultured dominant γ-proteobacteria affiliating with the SAR86 cluster and members of the culturable genus Oceanospirillum were not enriched or activated, but there was no indication of substrate-induced cell death, either. Strains of Vibrio and A/C maintained high ribosome levels in pure cultures during extended periods of starvation, whereas Oceanospirillum spp. did not. The life strategy of rapidly enriched culturable γ-proteobacteria could thus be described as a “feast and famine” existence involving different activation levels of substrate concentration.  相似文献   

5.
Enrichment experiments with North Sea bacterioplankton were performed to test if rapid incubation-induced changes in community structure explain the frequent isolation of members of a few particular bacterial lineages or if readily culturable bacteria are common in the plankton but in a state of dormancy. A metabolic inhibitor of cell division (nalidixic acid [NA]) was added to substrate-amended (S+) and unamended (S-) grazer-free seawater samples, and shifts in community composition and per cell DNA and protein content were compared with untreated controls. In addition, starvation survival experiments were performed on selected isolates. Incubations resulted in rapid community shifts towards typical culturable genera rather than in the activation of either dormant cells or the original DNA-rich bacterial fraction. Vibrio spp. and members of the Alteromonas/Colwellia cluster (A/C) were selectively enriched in S+ and S-, respectively, and this trend was even magnified by the addition of NA. These increases corresponded with the rise of cell populations with distinctively different but generally higher protein and DNA content in the various treatments. Uncultured dominant gamma-proteobacteria affiliating with the SAR86 cluster and members of the culturable genus Oceanospirillum were not enriched or activated, but there was no indication of substrate-induced cell death, either. Strains of Vibrio and A/C maintained high ribosome levels in pure cultures during extended periods of starvation, whereas Oceanospirillum spp. did not. The life strategy of rapidly enriched culturable gamma-proteobacteria could thus be described as a "feast and famine" existence involving different activation levels of substrate concentration.  相似文献   

6.
Dilution experiments are used commonly to provide estimates of grazing pressure exerted on phytoplankton and bacterioplankton as well as estimate their growth rates. However, very little attention has been given to the dynamics of grazers, especially heterotrophic nanoflagellates (HNF), in such experiments. We found temporal changes in concentrations of ciliates and HNF in a dilution experiment using water from the oligotrophic N.W. Mediterranean Sea. Ciliates decreased markedly over 24 h when held in seawater diluted with particle-free water (60% and 20% final conc whole seawater) while HNF increased in concentration in the same treatments. Using a time-course approach in a second experiment, we monitored changes in HNF and bacterioplankton concentrations in 20% whole seawater (80% particle-free seawater). Both HNF and heterotrophic bacteria displayed stable concentrations for the first 12 h and then grew rapidly, especially HNF, from 12 to 24 h. Examination of bacterial community composition using denaturing gel gradient electrophoresis (DGGE) showed a change in community composition over the 24 h incubation period. Dilution can have differential effects on the distinct components of the marine microbial food web.  相似文献   

7.
Effects of nutrient deprivation on Vibrio cholerae   总被引:10,自引:0,他引:10  
Environmental and clinical strains of Vibrio cholerae were exposed to nutrient-free artificial seawater and filtered natural seawater microcosms for selected time intervals and examined for changes in cell morphology and number. Cells observed by transmission electron and epifluorescence microscopy were found to undergo gross alterations in cell morphology with time of exposure. The vibroid cells decreased in volume by 85% and developed into small coccoid forms surrounded by remnant cell walls. The initial number of cells inoculated into nutrient-free microcosms (culturable count and direct viable count) increased 2.5 log10 within 3 days, and even after 75 days the number of viable cells was still 1 to 2 log10 higher than the initial inoculum size. Nutrient-depleted coccoid-shaped cells were restored to normal size and assumed a bacillary shape within 3 h and began to divide within 5 h after nutrient supplementation. The increase in cell number and decrease in cell volume under nutrient-depleted conditions, as well as the rapid growth response after nutrient supplementation, may describe some of the survival mechanisms of V. cholerae in the aquatic environment.  相似文献   

8.
Effects of nutrient deprivation on Vibrio cholerae.   总被引:12,自引:9,他引:3       下载免费PDF全文
Environmental and clinical strains of Vibrio cholerae were exposed to nutrient-free artificial seawater and filtered natural seawater microcosms for selected time intervals and examined for changes in cell morphology and number. Cells observed by transmission electron and epifluorescence microscopy were found to undergo gross alterations in cell morphology with time of exposure. The vibroid cells decreased in volume by 85% and developed into small coccoid forms surrounded by remnant cell walls. The initial number of cells inoculated into nutrient-free microcosms (culturable count and direct viable count) increased 2.5 log10 within 3 days, and even after 75 days the number of viable cells was still 1 to 2 log10 higher than the initial inoculum size. Nutrient-depleted coccoid-shaped cells were restored to normal size and assumed a bacillary shape within 3 h and began to divide within 5 h after nutrient supplementation. The increase in cell number and decrease in cell volume under nutrient-depleted conditions, as well as the rapid growth response after nutrient supplementation, may describe some of the survival mechanisms of V. cholerae in the aquatic environment.  相似文献   

9.
Inter-annual variability in marine coastal Antarctic bacterioplankton   总被引:1,自引:1,他引:0  
The dynamics of Antarctic coastal marine bacterioplankton has been studied over a 2-year period. Two field stations were sampled between one and three times a week in 1989 and 1991 in the “Terre Adélie” area. The survey included physicochemical (temperature and particulate organic matter) and bacteriological (total and heterotrophic counts, cell volume and frequency of dividing cells estimation) measurements. The results suggest that a strong interannual variability affects the total bacterial abundance, the mean cell volume, the percentage of free living cells and, to a lesser extent. the culturable saprophytic bacterial communities. The observed variability could be partly explained by a large deficit of solar irradiance during the 2nd year of study that may have affected sea ice and seawater primary production.  相似文献   

10.
Abstract Escherichia coli H10407 was suspended in seawater (38.5‰ salinity) contained in membrane chambers (0.4-μm polycarbonate membrane) incubated in situ at 25°C in Nixon's Harbor, South Bimini, Bahamas. Although colonies of E. coli could not be cultured after 13 h post chamber inoculation, the number of fluorescent-antibody staining cells remained constant. Direct viable counts revealed that viable cells were present, even though the cell suspension was not culturable on the media tested. After exposure to seawater for 112 h, cells were concentrated by centrifugation and introduced into ligated rabbit ileal loops. E. coli H10407 proved viable for recovery from inoculated loops and was confirmed by detection of characteristic plasmid bands. Results indicate that enteric pathogens remain viable in seawater long after they cease to be cultivable on laboratory media.  相似文献   

11.
The viabilities of five strains of Vibrio vulnificus were evaluated during the storage of the organisms in sterile seawater at 5 degrees C. The number of CFU was measured by plate count methods on rich media. The total cell numbers were determined by direct microscopic count methods. The titer of CFU declined logarithmically to undetectable levels over a period of 2 to 3 weeks, while the total cell numbers were unchanged. Midway through each study, higher culturable cell counts began to be observed on plates containing catalase or sodium pyruvate; during the latter stages of the study, the plate counts on such media were up to 1,000-fold higher than those on unsupplemented plates. Because autoclaving is known to generate hydrogen peroxide in rich media, and because catalase and sodium pyruvate are known to eliminate hydrogen peroxide, it appears that the conditions of the experiments led to the selection of a hydrogen peroxide-sensitive culturable cell subpopulation. At the time of the final stage of the decline in viability of each culture, hydrogen peroxide-sensitive cells were the only culturable cells present. Warming samples of the cultures to room temperature led to the growth of these residual culturable cells, utilizing nutrients provided by the nonculturable cells. The cells that grew recovered hydrogen peroxide resistance. When mixtures of culturable and nonculturable cells were diluted to the point where only nonculturable cells were present, or when the hydrogen peroxide-sensitive culturable cells had declined to undetectable levels, warming had no effect; no culturable cells were recovered. Warming has been reported to "resuscitate" nonculturable cells. Recognition of the existence of hydrogen peroxide-sensitive culturable cell populations, as well as their ability to grow to high levels in the warmed seawater microcosms, leads instead to the conclusion that while warming permits culturable cells to grow, it has no effect on nonculturable cells.  相似文献   

12.
Survival of Bacillus licheniformis in Seawater Model Ecosystems   总被引:3,自引:1,他引:2       下载免费PDF全文
The fate of Bacillus licheniformis DSM 13 was monitored after introduction into laboratory microcosms and mesocosms established in the Knebel Vig estuary, Denmark. The model organism was detected by a combination of immunofluorescence microscopy and nonselective plating followed by colony blotting. This allowed simultaneous quantification of intact cells and culturable cells. B. licheniformis DSM 13 adapted poorly to the conditions in filtered (0.2-μm-pore-size filter) seawater. Results from additional microcosm studies using natural seawater demonstrated that protozoan grazing also was important in regulating the population of the introduced model organism. In experiments using mesocosms, B. licheniformis DSM 13 also showed a rapid die-off. The introduction of the organism led to increased nutrient levels and to increased growth of both autotrophic and heterotrophic components of the plankton community compared with those of control enclosures. Thereby, a more intensive predation impact on the bacterioplankton community was induced. The combination of microcosm and mesocosm experiments provides a scenario in which the influence of single biotic and abiotic factors on survival of introduced organisms can be tested and in which the effect of the introduction on ecosystem structure and function can be evaluated. This test concept might prove useful in risk assessment of genetically modified microorganisms.  相似文献   

13.
Cultivation-dependent and -independent methods were combined to investigate the microdiversity of a Polynucleobacter subcluster population (Betaproteobacteria) numerically dominating the bacterioplankton of a small, humic freshwater pond. Complete coverage of the population by cultivation allowed the analysis of microdiversity beyond the phylogenetic resolution of ribosomal markers. Fluorescent in situ hybridization with two probes specific for the narrow subcluster C (PnecC bacteria) of the Polynucleobacter cluster revealed that this population contributed up to 60% to the total number of bacterioplankton cells. Microdiversity was investigated for a date at which the highest relative numbers of PnecC were observed. A clone library of fragments of the ribosomal operon (16S rRNA genes, complete 16S-23S internal transcribed spacer 1 [ITS1], partial 23S rRNA genes) amplified with universal bacterial primers was constructed. The library was stepwise screened for fragments from PnecC bacteria and for different ITS genotypes of PnecC bacteria. The isolated PnecC strains were characterized by sequencing of the 16S rRNA genes and the ITS1. Both the clone library and the established culture collection contained only the same three ITS genotypes, and one of them contributed 46% to the entire number of clones. Genomic fingerprinting of the isolates with several methods always resulted in the detection of only one fingerprint per ITS genotype. We conclude that a Polynucleobacter population with an extremely low intraspecific diversity and an uneven structure numerically dominated the bacterioplankton community in the investigated habitat. This low intraspecific diversity is in strong contrast to the high intraspecific diversities found in marine bacterial populations.  相似文献   

14.
Cultivation-dependent and -independent methods were combined to investigate the microdiversity of a Polynucleobacter subcluster population (Betaproteobacteria) numerically dominating the bacterioplankton of a small, humic freshwater pond. Complete coverage of the population by cultivation allowed the analysis of microdiversity beyond the phylogenetic resolution of ribosomal markers. Fluorescent in situ hybridization with two probes specific for the narrow subcluster C (PnecC bacteria) of the Polynucleobacter cluster revealed that this population contributed up to 60% to the total number of bacterioplankton cells. Microdiversity was investigated for a date at which the highest relative numbers of PnecC were observed. A clone library of fragments of the ribosomal operon (16S rRNA genes, complete 16S-23S internal transcribed spacer 1 [ITS1], partial 23S rRNA genes) amplified with universal bacterial primers was constructed. The library was stepwise screened for fragments from PnecC bacteria and for different ITS genotypes of PnecC bacteria. The isolated PnecC strains were characterized by sequencing of the 16S rRNA genes and the ITS1. Both the clone library and the established culture collection contained only the same three ITS genotypes, and one of them contributed 46% to the entire number of clones. Genomic fingerprinting of the isolates with several methods always resulted in the detection of only one fingerprint per ITS genotype. We conclude that a Polynucleobacter population with an extremely low intraspecific diversity and an uneven structure numerically dominated the bacterioplankton community in the investigated habitat. This low intraspecific diversity is in strong contrast to the high intraspecific diversities found in marine bacterial populations.  相似文献   

15.
【背景】绝大多数海洋微生物不可培养,为挖掘海洋生态系统中可培养的微生物资源,研究者尝试寡营养培养等方法。【目的】比较不同寡营养培养条件下南海水体细菌数量、群落结构及其对碳源的利用特征差异。【方法】采用原2216E培养液(Y)、稀释10倍(Y-10)和稀释50倍(Y-50)的2216E培养液培养南海海水样品,用荧光定量PCR法和16S rRNA基因检测细菌数量和菌群结构;利用平板计数法计数异养细菌的数量,纯化鉴定可培养细菌;采用Biolog EcoPlateTM微板法分析不同培养基中细菌群落对碳源的利用特征。【结果】Y组细菌总数高于Y-10组和Y-50组,差异不显著(P>0.05),但异养细菌数量显著高于Y-10组和Y-50组(P<0.05)。16S rRNA基因测序结果表明,不同稀释倍数下的细菌群落结构差异明显,Y组检测出10门193属,优势类群为Proteobacteria(56.44%)和Bacteroides (37.27%);Y-10组检测出15门220属,优势类群为Proteobacteria (40.30%)、Bacteroides(36.91%)和Firmic...  相似文献   

16.
Genetically engineered Pseudomonas sp. strain B13(FR1) was released into laboratory-scale marine ecosystem models (microcosms). Survival of the introduced population in the water column and the sediment was determined by plating on a selective medium and by quantitative competitive PCR. The activity of the released bacteria was determined by in situ hybridization of single cells with a specific rRNA-targeting oligonucleotide probe. Two microcosms were inoculated with 10(6) cells ml-1, while an uninoculated microcosm served as a control. The number of Pseudomonas sp. strain B13(FR1) cells decreased rapidly to ca. 10(2) cells ml-1 within 2 days after the release, which is indicative of grazing by protozoa. Three days after the introduction into seawater, cells were unculturable, but PCR continued to detect cells in low numbers. Immediately after the release, the ribosomal content of Pseudomonas sp. strain B13(FR1) corresponded to a generation time of 2 h. The growth rate decreased to less than 0.04 h-1 in 5 days and remained low, probably because of carbon limitation of the cells. Specific amendment of the microcosms with 10 mM 4-chlorobenzoate resulted in a rapid increase of the growth rate and an exponentially increasing number of cells detected by PCR, but not in resuscitation of the cells to a culturable state. The release of Pseudomonas sp. strain B13(FR1) into the microcosms seemed to affect only the indigenous bacterioplankton community transiently. Effects on the community were also apparent from the handling of water during filling of the microcosms and the amendment with 4-chlorobenzoate.  相似文献   

17.
A bacterial community may be resistant to environmental disturbances if some of its species show metabolic flexibility and physiological tolerance to the changing conditions. Alternatively, disturbances can change the composition of the community and thereby potentially affect ecosystem processes. The impact of disturbance on the composition of bacterioplankton communities was examined in continuous seawater cultures. Bacterial assemblages from geographically closely connected areas, the Baltic Sea (salinity 7 and high dissolved organic carbon [DOC]) and Skagerrak (salinity 28 and low DOC), were exposed to gradual opposing changes in salinity and DOC over a 3-week period such that the Baltic community was exposed to Skagerrak salinity and DOC and vice versa. Denaturing gradient gel electrophoresis and clone libraries of PCR-amplified 16S rRNA genes showed that the composition of the transplanted communities differed significantly from those held at constant salinity. Despite this, the growth yields (number of cells ml(-1)) were similar, which suggests similar levels of substrate utilization. Deep 454 pyrosequencing of 16S rRNA genes showed that the composition of the disturbed communities had changed due to the recruitment of phylotypes present in the rare biosphere of the original community. The study shows that members of the rare biosphere can become abundant in a bacterioplankton community after disturbance and that those bacteria can have important roles in maintaining ecosystem processes.  相似文献   

18.
The temporal variation in archaeal diversity in vent fluids from a midocean ridge subseafloor habitat was examined using PCR-amplified 16S rRNA gene sequence analysis and most-probable-number (MPN) cultivation techniques targeting hyperthermophiles. To determine how variations in temperature and chemical characteristics of subseafloor fluids affect the microbial communities, we performed molecular phylogenetic and chemical analyses on diffuse-flow vent fluids from one site shortly after a volcanic eruption in 1998 and again in 1999 and 2000. The archaeal population was divided into particle-attached (>3-μm-diameter cells) and free-living fractions to test the hypothesis that subseafloor microorganisms associated with active hydrothermal systems are adapted for a lifestyle that involves attachment to solid surfaces and formation of biofilms. To delineate between entrained seawater archaea and the indigenous subseafloor microbial community, a background seawater sample was also examined and found to consist only of Group I Crenarchaeota and Group II Euryarchaeota, both of which were also present in vent fluids. The indigenous subseafloor archaeal community consisted of clones related to both mesophilic and hyperthermophilic Methanococcales, as well as many uncultured Euryarchaeota, some of which have been identified in other vent environments. The particle-attached fraction consistently showed greater diversity than the free-living fraction. The fluid and MPN counts indicate that while culturable hyperthermophiles represent less than 1% of the total microbial community, the subseafloor at new eruption sites does support a hyperthermophilic microbial community. The temperature and chemical indicators of the degree of subseafloor mixing appear to be the most important environmental parameters affecting community diversity, and it is apparent that decreasing fluid temperatures correlated with increased entrainment of seawater, decreased concentrations of hydrothermal chemical species, and increased incidence of seawater archaeal sequences.  相似文献   

19.
Abstract The survival pattern and plasmid maintenance of Escherichia coli was examined in an artificial seawater microcosm. It was found that the three strains of E. coli (EK3C, H10407 and 34309) included in the study were able to maintain a portion of cells in the culturable phase for at least 3 years in artificial seawater. Along with retaining culturability, that portion of the cell population also maintained their indigenous plasmids over the 3-year period. It is concluded that cells of E. coli maintaining culturability in seawater are selectively adapted to the salinity of seawater, remaining in a culturable state. The results of the study are significant in that it has been assumed by many public health authorities that E. coli cannot survive, without nutrient addition, in seawater for long periods of time, i.e., years of exposure to seawater.  相似文献   

20.
The marine bacterium Shewanella algae, which was identified as the cause of human cases of bacteremia and ear infections in Denmark in the summers of 1994 and 1995, was detected in seawater only during the months (July, August, September, and October) when the water temperature was above 13°C. The bacterium is a typical mesophilic organism, and model experiments were conducted to elucidate the fate of the organism under cold and nutrient-limited conditions. The culturable count of S. algae decreased rapidly from 107 CFU/ml to 101 CFU/ml in approximately 1 month when cells grown at 20 to 37°C were exposed to cold (2°C) seawater. In contrast, the culturable count of cells exposed to warmer seawater (10 to 25°C) remained constant. Allowing the bacterium a transition period in seawater at 20°C before exposure to the 2°C seawater resulted in 100% survival over a period of 1 to 2 months. The cold protection offered by this transition (starvation) probably explains the ability of the organism to persist in Danish seawater despite very low (0 to 1°C) winter water temperatures. The culturable counts of samples kept at 2°C increased to 105 to 107 CFU/ml at room temperature. Most probable number analysis showed this result to be due to regrowth rather than resuscitation. It was hypothesized that S. algae would survive cold exposure better if in the biofilm state; however, culturable counts from S. algae biofilms decreased as rapidly as did counts of planktonic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号