首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Animal models of multiple myeloma vary in terms of consistency of onset, degree of tumour burden and degree of myeloma bone disease. Here we describe five pre-clinical models of myeloma in NOD/SCID-GAMMA mice to specifically study the effects of therapeutic agents on myeloma bone disease. Groups of 7–8 week old female irradiated NOD/SCID-GAMMA mice were injected intravenously via the tail vein with either 1x106 JJN3, U266, XG-1 or OPM-2 human myeloma cell lines or patient-derived myeloma cells. At the first signs of morbidity in each tumour group all animals were sacrificed. Tumour load was measured by histological analysis, and bone disease was assessed by micro-CT and standard histomorphometric methods. Mice injected with JJN3, U266 or OPM-2 cells showed high tumour bone marrow infiltration of the long bones with low variability, resulting in osteolytic lesions. In contrast, mice injected with XG-1 or patient-derived myeloma cells showed lower tumour bone marrow infiltration and less bone disease with high variability. Injection of JJN3 cells into NOD/SCID-GAMMA mice resulted in an aggressive, short-term model of myeloma with mice exhibiting signs of morbidity 3 weeks later. Treating these mice with zoledronic acid at the time of tumour cell injection or once tumour was established prevented JJN3-induced bone disease but did not reduce tumour burden, whereas, carfilzomib treatment given once tumour was established significantly reduced tumour burden. Injection of U266, XG-1, OPM-2 and patient-derived myeloma cells resulted in less aggressive longer-term models of myeloma with mice exhibiting signs of morbidity 8 weeks later. Treating U266-induced disease with zoledronic acid prevented the formation of osteolytic lesions and trabecular bone loss as well as reducing tumour burden whereas, carfilzomib treatment only reduced tumour burden. In summary, JJN3, U266 or OPM-2 cells injected into NOD/SCID-GAMMA mice provide robust models to study anti-myeloma therapies, particularly those targeting myeloma bone disease.  相似文献   

2.
The growth factor combination containing early acting cytokines FLT-3 ligand (FL), Stem Cell Factor (SCF) and thrombopoietin (TPO) is able to maintain, for an extended culture period, early stem cells, defined as long-term repopulating NOD/SCID mice (Scid Repopulating Cell-SRC) contained in cord blood (CB). In this culture system, the role of IL-6 and IL-3 has not been clearly established. Using a combination of FL+TPO+SCF with or without IL-6, we were able to form CB CD34+ cells for 30 weeks. The CB CD34+ cells cultured in this system engrafted NOD/SCID mice after 6 weeks of culture; the cells from primary recipients were also able to engraft secondary NOD/SCID mice. When CB CD34+ cells were cultured in the presence of IL-3 in the place of IL-6 we observed an even better expansion of cells and a similar clonogenic progenitor output in the first 8 weeks of culture. However, more primitive LTC-IC output increased up to week 6 with the growth factor combination containing IL-3 and then decreased and disappeared, while with the growth factor combination with or without IL-6 increased up to week 23. Cells cultured for 4 weeks with the 4-factor combination containing IL-3 engrafted NOD/SCID mice less efficiently. Repopulation of NOD/SCID mice was no longer observed when ex vivo expansion was performed for 6 weeks. This study provides some evidence that no differences could be detected in long-term maintenance and even expansion of human primitive cord blood cells cultured with FL+TPO+SCF in the presence or absence of IL-6. Under the culture conditions employed in this study, the presence of IL-3 reduced the repopulating potential of expanded CB CD34+ cells.  相似文献   

3.
Monoclonal antibodies are essential to the success of molecularly targeted therapies. Recently, numerous therapeutic antibodies have been developed for various diseases, including cancer and autoimmune diseases. Experimental systems to effectively evaluate these candidate antibodies are urgently needed. One of the mechanisms used by antibodies to kill tumor cells is antibody-dependent cellular cytotoxicity (ADCC), in which natural killer cells (NK) are the main mediator. The capacity to induce ADCC has conventionally been assessed in the human-mouse xeno-graft model, in which human peripheral blood mononuclear cells (PBMC), containing NK cells along with antibodies, are administered to tumor-bearing immunodeficient mice. However, contamination from other cellular populations often affects tumor growth, making it difficult to evaluate the antibody’s effect. In this study, we established a new NK-dependent ADCC assay model using a supra-immunodeficient strain of mice, NOD/SCID/γcnull (NOG). Our model system simply consisted of three elements: isolated human NK cells, a Burkitt’s lymphoma cell line (Daudi), and an anti-CD20 antibody (Rituximab). In this experimental setting, human NK cells from healthy donors retained their killing activity and suppressed the growth of Daudi cells in NOG mice when they were administered along with Rituximab. This system, therefore, is useful for evaluating the in vivo function of human NK cells.  相似文献   

4.
An experimental model for human T lymphocyte development from hemopoietic stem cells is necessary to study the complex processes of T cell differentiation in vivo. In this study, we report a newly developed nonobese diabetic (NOD)/Shi-scid, IL-2Rgamma null (NOD/SCID/gamma(c)(null)) mouse model for human T lymphopoiesis. When these mice were transplanted with human cord blood CD34(+) cells, the mice reproductively developed human T cells in their thymus and migrated into peripheral lymphoid organs. Furthermore, these T cells bear polyclonal TCR-alphabeta, and respond not only to mitogenic stimuli, such as PHA and IL-2, but to allogenic human cells. These results indicate that functional human T lymphocytes can be reconstituted from CD34(+) cells in NOD/SCID/gamma(c)(null) mice. This newly developed mouse model is expected to become a useful tool for the analysis of human T lymphopoiesis and immune response, and an animal model for studying T lymphotropic viral infections, such as HIV.  相似文献   

5.
NOD/SCID小鼠模型在实验血液学研究中的应用   总被引:1,自引:1,他引:0  
NOD/SCID(非肥胖糖尿病/重症联合免疫缺陷)小鼠是在SCID(重症联合免疫缺陷)小鼠的基础上与非肥胖性糖尿病小鼠(NOD/Lt)品系回交的免疫缺陷鼠。NOD/SCID小鼠既有先天免疫缺陷,又有T和B淋巴细胞缺乏,各种肿瘤细胞可以植入,且较少发生排斥反应及移植物抗宿主病(GVHD),所以NOD/SCID小鼠逐渐成为血液学实验研究的有用工具。本文从NOD/SCID小鼠的生物学特性、建立人类白血病模型、干细胞移植、药物研究及NOD/SCID小鼠应用中存在的不足和改良等方面综合述评。  相似文献   

6.

Background

We systematically analyzed multiple myeloma (MM) cell lines and patient bone marrow cells for their engraftment capacity in immunodeficient mice and validated the response of the resulting xenografts to antimyeloma agents.

Design and Methods

Using flow cytometry and near infrared fluorescence in-vivo-imaging, growth kinetics of MM cell lines L363 and RPMI8226 and patient bone marrow cells were investigated with use of a murine subcutaneous bone implant, intratibial and intravenous approach in NOD/SCID, NOD/SCID treated with CD122 antibody and NOD/SCID IL-2Rγ(null) mice (NSG).

Results

Myeloma growth was significantly increased in the absence of natural killer cell activity (NSG or αCD122-treated NOD/SCID). Comparison of NSG and αCD122-treated NOD/SCID revealed enhanced growth kinetics in the former, especially with respect to metastatic tumor sites which were exclusively observed therein. In NSG, MM cells were more tumorigenic when injected intratibially than intravenously. In NOD/SCID in contrast, the use of juvenile long bone implants was superior to intratibial or intravenous cancer cell injection. Using the intratibial NSG model, mice developed typical disease symptoms exclusively when implanted with human MM cell lines or patient-derived bone marrow cells, but not with healthy bone marrow cells nor in mock-injected animals. Bortezomib and dexamethasone delayed myeloma progression in L363- as well as patient-derived MM cell bearing NSG. Antitumor activity could be quantified via flow cytometry and in vivo imaging analyses.

Conclusions

Our results suggest that the intratibial NSG MM model mimics the clinical situation of the disseminated disease and serves as a valuable tool in the development of novel anticancer strategies.  相似文献   

7.
In multiple myeloma (MM), bone marrow microenvironment has an important role for the survival and growth of plasma cells. We previously showed that a high bone turnover, induced by ovariectomy, increased MM cells growth in the 5T2MM model. The present study characterized a new plasma cell line (5THL) which was isolated from 5T2MM mice previously ovariectomized. Cells were propagated unchanged in normal C57BL/KaLwRij mice during six generations. 5THL was compared to the original 5T2MM phenotype. Paraproteinemia was detected 6 weeks post injection in 5THL mice and after 8 weeks in 5T2MM mice. All 5THL mice developed a hind-limb paralysis after 10 weeks. 5T2MM mice were euthanized at 16 weeks, due to a more progressive development of the disease. In 5THL mice, osteolytic lesions were observed after 8 weeks and severe bone destruction was evidenced at 10 weeks. In 5T2MM mice, minimal lesions were observed only after 10 weeks. Like in 5T2MM mice, no extra osseous lesions were observed in 5THL mice. The 5THL MM model closely mimics human myeloma with higher and faster bone aggressiveness. This new aggressive cell line, with a preserved phenotype, was selected by an altered microenvironment due to an increased bone turnover.  相似文献   

8.
The graft-versus-myeloma (GVM) effect represents a powerful form of immune attack exerted by alloreactive T cells against multiple myeloma cells, which leads to clinical responses in multiple myeloma transplant recipients. Whether myeloma cells are themselves able to induce alloreactive T cells capable of the GVM effect is not defined. Using adoptive transfer of T naive cells into myeloma-bearing mice (established by transplantation of human RPMI8226-TGL myeloma cells into CD122(+) cell-depleted NOD/SCID hosts), we found that myeloma cells induced alloreactive T cells that suppressed myeloma growth and prolonged survival of T cell recipients. Myeloma-induced alloreactive T cells arising in the myeloma-infiltrated bones exerted cytotoxic activity against resident myeloma cells, but limited activity against control myeloma cells obtained from myeloma-bearing mice that did not receive T naive cells. These myeloma-induced alloreactive T cells were derived through multiple CD8(+) T cell divisions and enriched in double-positive (DP) T cells coexpressing the CD8αα and CD4 coreceptors. MHC class I expression on myeloma cells and contact with T cells were required for CD8(+) T cell divisions and DP-T cell development. DP-T cells present in myeloma-infiltrated bones contained a higher proportion of cells expressing cytotoxic mediators IFN-γ and/or perforin compared with single-positive CD8(+) T cells, acquired the capacity to degranulate as measured by CD107 expression, and contributed to an elevated perforin level seen in the myeloma-infiltrated bones. These observations suggest that myeloma-induced alloreactive T cells arising in myeloma-infiltrated bones are enriched with DP-T cells equipped with cytotoxic effector functions that are likely to be involved in the GVM effect.  相似文献   

9.
Background aimsNon-irradiated immunodeficient recipients provide the best physiologic setting for revealing hematopoietic stem cell (HSC) functions after xenotransplantion. An approach that efficiently permits the detection of human hematopoietic repopulating cells in non-irradiated recipients is therefore highly desired.MethodsWe compared side-by-side the ability to reconstitute hematopoiesis via intra-bone marrow transplantation (IBMT) in three commonly used mouse strains avoiding previous irradiation.ResultsNon-irradiated NOD/SCID and NOD/SCID (β2m?/? mouse strains prevent engraftment even after IBMT. In contrast, combining the robustness of the NOD/SCID IL-2Rγ?/? recipient with the sensitivity of IBMT facilitates the detection, without previous host irradiation, of human SCID-repopulating cells 10 weeks after transplantation. The level of chimerism averaged 14% and multilineage engraftment (lymphoid dominant) was observed consistently in all mice. Analysis of injected and non-injected bones, spleen and peripheral blood demonstrated that engrafting cells were capable of in vivo migration and expansion.ConclusionsCombining the robustness of the NOD/SCID IL-2Rγ?/? mouse strain with the sensitivity of IBMT strongly facilitates long-term multilineage engraftment and migration for human CD34+ cells without the need for previous irradiation.  相似文献   

10.
目的:通过建立一理想的动物模型来模拟T细胞急性淋巴细胞白血病的发病状态,为探索急性淋巴细胞白血病全新的治疗方法提供平台。方法:采用抗鼠-CD122抗体注射NOD/SCID小鼠进行预处理,通过尾静脉注射9例不同病例的白血病细胞,以及1株T-ALL细胞系。通过检测小鼠体内白血病细胞及脏器白血病细胞浸润情况,观察白血病细胞植入。将白血病细胞进行二次移植,观察移植稳定性。对白血病动物模型进行药物处理,观察小鼠生存期,模拟人体治疗反应。结果:有4例病例的细胞及T-ALL细胞株成功植入。流式细胞检测显示受体小鼠体内较多比例人CD45+细胞表达,免疫组化显示CD45+细胞浸润小鼠不同脏器,系列移植也获得成功。体内药物处理显示地塞米松能延长小鼠的生存期,与临床观察相一致。结论:成功建立经抗鼠CD122单抗预处理的人T细胞急性淋巴细胞白血病NOD/SCID小鼠模型,具有原发疾病的所有主要特征。  相似文献   

11.
We established human peripheral blood mononuclear cell (PBMC)-transplanted R5 human immunodeficiency virus type 1 isolate JR-FL (HIV-1(JR-FL))-infected, nonobese diabetic-SCID, interleukin 2 receptor gamma-chain-knocked-out (NOG) mice, in which massive and systemic HIV-1 infection occurred. The susceptibility of the implanted PBMC to the infectivity and cytopathic effect of R5 HIV-1 appeared to stem from hyperactivation of the PBMC, which rapidly proliferated and expressed high levels of CCR5. When a novel spirodiketopiperazine-containing CCR5 inhibitor, AK602/ONO4128/GW873140 (molecular weight, 614), was administered to the NOG mice 1 day after R5 HIV-1 inoculation, the replication and cytopathic effects of R5 HIV-1 were significantly suppressed. In saline-treated mice (n = 7), the mean human CD4(+)/CD8(+) cell ratio was 0.1 on day 16 after inoculation, while levels in mice (n = 8) administered AK602 had a mean value of 0.92, comparable to levels in uninfected mice (n = 7). The mean number of HIV-RNA copies in plasma in saline-treated mice were approximately 10(6)/ml on day 16, while levels in AK602-treated mice were 1.27 x 10(3)/ml (P = 0.001). AK602 also significantly suppressed the number of proviral DNA copies and serum p24 levels (P = 0.001). These data suggest that the present NOG mouse system should serve as a small-animal AIDS model and warrant that AK602 be further developed as a potential therapeutic for HIV-1 infection.  相似文献   

12.
A human myeloma line was used to create a model of human multiple myeloma in vivo that would reproduce the pathophysiology of the disease, including the cachexia associated with cancer. Unirradiated severe combined immunodeficient (SCID) mice were used as surrogate hosts for in vivo experiments that allowed the effects of autocrine (human) verus paracrine (murine) cytokines on the development of myeloma to be studied. Serum levels of human paraprotein increased over time and with the number of cells transplanted. Transplanted mice developed major syndromes, cachexia and paralysis (due to invasion of bones by myeloma cells), associated with multiple myeloma. Analyses of serum samples obtained from transplanted mice revealed that when the mice were terminal, total serum protein decreased on average by 20%, whereas serum triglycerides decreased on average by 50%. These data indicate the mice were cachectic, which was confirmed by necropsy. The mice had low but measurable levels of both human and murine interleukin (IL)-6, soluble IL-6 receptor, and murine IL-10 in their sera. The presence of these cytokines and the IL-6 receptor in sera are also characteristics of human myeloma in patients. Since human cells do not respond to murine IL-6, it was possible to demonstrate clearly the importance of autocrine IL-6 in establishing myeloma in situ. By reproducing both the hallmarks of a cancer as well as the accompanying paraneoplastic syndromes, this model should be useful in designing more effective therapies for both the primary cancer as well as the accompanying secondary diseases.  相似文献   

13.

Background

Human pancreatic islet transplantation is a prospective curative treatment for diabetes. However, the lack of donor pancreases greatly limits this approach. One approach to overcome the limited supply of donor pancreases is to generate functional islets from human embryonic stem cells (hESCs), a cell line with unlimited proliferative capacity, through rapid directed differentiation. This study investigated whether pancreatic insulin-producing cells (IPCs) differentiated from hESCs could correct hyperglycemia in severe combined immunodeficient (SCID)/non-obese diabetic (NOD) mice, an animal model of diabetes.

Methods

We generated pancreatic IPCs from two hESC lines, YT1 and YT2, using an optimized four-stage differentiation protocol in a chemically defined culture system. Then, about 5–7×106 differentiated cells were transplanted into the epididymal fat pad of SCID/NOD mice (n = 20). The control group were transplanted with undifferentiated hESCs (n = 6). Graft survival and function were assessed using immunohistochemistry, and measuring serum human C-peptide and blood glucose levels.

Results

The pancreatic IPCs were generated by the four-stage differentiation protocol using hESCs. About 17.1% of differentiated cells expressed insulin, as determined by flow cytometry. These cells secreted insulin/C-peptide following glucose stimulation, similarly to adult human islets. Most of these IPCs co-expressed mature β cell-specific markers, including human C-peptide, GLUT2, PDX1, insulin, and glucagon. After implantation into the epididymal fat pad of SCID/NOD mice, the hESC-derived pancreatic IPCs corrected hyperglycemia for ≥8 weeks. None of the animals transplanted with pancreatic IPCs developed tumors during the time. The mean survival of recipients was increased by implanted IPCs as compared to implanted undifferentiated hESCs (P<0.0001).

Conclusions

The results of this study confirmed that human terminally differentiated pancreatic IPCs derived from hESCs can correct hyperglycemia in SCID/NOD mice for ≥8 weeks.  相似文献   

14.
We established a novel experimental model for human T-cell leukemia virus type 1 (HTLV-1)-induced tumor using NOD-SCID/gammac(null) (NOG) mice. This model is very useful for investigating the mechanism of tumorigenesis and malignant cell growth of adult T-cell leukemia (ATL)/lymphoma, which still remains unclear. Nine HTLV-1-infected cell lines were inoculated subcutaneously in the postauricular region of NOG mice. As early as 2 to 3 weeks after inoculation, seven cell lines produced a visible tumor while two transformed cell lines failed to do so. Five of seven lines produced a progressively growing large tumor with leukemic infiltration of the cells in various organs that eventually killed the animals. Leukemic cell lines formed soft tumors, whereas some transformed cell lines developed into hemorrhagic hard tumors in NOG mice. One of the leukemic cell lines, ED-40515(-), was unable to produce visible tumors in NOD-SCID mice with a common gamma-chain after 2 weeks. In vivo NF-kappaB DNA binding activity of the ED-40515(-) cell line was higher and the NF-kappaB components were changed compared to cells in vitro. Bay 11-7082, a specific and effective NF-kappaB inhibitor, prevented tumor growth at the sites of the primary region and leukemic infiltration in various organs of NOG mice. This in vivo model of ATL could provide a novel system for use in clarifying the mechanism of growth of HTLV-1-infected cells as well as for the development of new drugs against ATL.  相似文献   

15.
Effect of IgE peptide-specific CTL on IgE antibody production was studied in mouse models. CTL elicited in B6.A2Kb tg mice against a human IgE peptide nonamer, pWV, lysed human IgE-secreting U266 myeloma cells and inhibit IgE production by these cells. U266 transfected with mouse A2Kb transgene (U266-A2Kb) were optimally lysed by these CTL, because the α3 domain of A2Kb interacts well with the CD8 co-receptors. The CTL generated were more effective in inhibiting IgE production by U266-A2Kb cells than lysing these cells. IgE production by and progression of U266 myeloma were suppressed in B6.A2Kb tg mice rendered tolerant to these cells and vaccinated with pWV along with CpG. We also studied the CTL response elicited in wild-type mice by a mouse nonameric IgE peptide, PI-1, along with CpG. This treatment caused a transient suppression of the IgE response in mice previously sensitized to an antigen. In mice treated with this regimen repeatedly, the IgE response was fully recovered 20 days after each treatment. Notably, while IgE peptide/CpG-treated mice remained unresponsive to antigen challenge in vivo, antigen-specific IgE production can be elicited by antigen in cultured splenocytes from these mice. Moreover, IgE peptide/CpG also inhibited an on-going IgE response, including IgE production by bone marrow cells. Taken together, these observations indicate that a CTL-based IgE peptide vaccine targeting IgE-secreting B/plasma cells may be safely employed as a therapeutic approach for suppressing IgE production.  相似文献   

16.
In vivo studies concerning the function of human hematopoietic stem cells (HSC) are limited by relatively low levels of engraftment and the failure of the engrafted HSC preparations to differentiate into functional immune cells after systemic application. In the present paper we describe the effect of intrahepatically transplanted CD34+ cells from cord blood into the liver of newborn or adult NOD/SCID mice on organ engraftment and differentiation.Analyzing the short and long term time dependency of human cell recruitment into mouse organs after cell transplantation in the liver of newborn and adult NOD/SCID mice by RT-PCR and FACS analysis, a significantly high engraftment was found after transplantation into liver of newborn NOD/SCID mice compared to adult mice, with the highest level of 35% human cells in bone marrow and 4.9% human cells in spleen at day 70. These human cells showed CD19 B-cell, CD34 and CD38 hematopoietic and CD33 myeloid cell differentiation, but lacked any T-cell differentiation. HSC transplantation into liver of adult NOD/SCID mice resulted in minor recruitment of human cells from mouse liver to other mouse organs. The results indicate the usefulness of the intrahepatic application route into the liver of newborn NOD/SCID mice for the investigation of hematopoietic differentiation potential of CD34+ cord blood stem cell preparations.  相似文献   

17.
Severely immunodeficient NOD/Shi-scid IL2Rgnull (NOG) mice are used as recipients for human tissue transplantation, which produces chimeric mice with various types of human tissue. NOG mice expressing transgenic urokinase-type plasminogen activator in the liver (uPA-NOG) were produced. Human hepatocytes injected into uPA-NOG mice repopulated the recipient livers with human cells. The uPA-NOG model has several advantages over previously produced chimeric mouse models of human liver: (1) the severely immunodeficient NOG background enables higher xenogeneic cell engraftment; (2) the absence of neonatal lethality enables mating of homozygotes, which increased the efficacy of homozygote production; and (3) donor xenogeneic human hepatocytes could be readily transplanted into young uPA-NOG mice, which provide easier surgical manipulation and improved recipient survival.  相似文献   

18.
Mixed-lineage-leukemia (MLL) fusion oncogenes are intimately involved in acute leukemia and secondary therapy-related acute leukemia. To understand MLL-rearranged leukemia, several murine models for this disease have been established. However, the mouse leukemia derived from mouse hematopoietic stem cells (HSCs) may not be fully comparable with human leukemia. Here we developed a humanized mouse model for human leukemia by transplanting human cord blood-derived HSCs transduced with an MLL-AF10 oncogene into a supra-immunodeficient mouse strain, NOD/Shi-scid, IL-2Rγ(-/-) (NOG) mice. Injection of the MLL-AF10-transduced HSCs into the liver of NOG mice enhanced multilineage hematopoiesis, but did not induce leukemia. Because active mutations in ras genes are often found in MLL-related leukemia, we next transduced the gene for a constitutively active form of K-ras along with the MLL-AF10 oncogene. Eight weeks after transplantation, all the recipient mice had developed acute monoblastic leukemia (the M5 phenotype in French-American-British classification). We thus successfully established a human MLL-rearranged leukemia that was derived in vivo from human HSCs. In addition, since the enforced expression of the mutant K-ras alone was insufficient to induce leukemia, the present model may also be a useful experimental platform for the multi-step leukemogenesis model of human leukemia.  相似文献   

19.
20.
Ito T  Maeda T  Senpuku H 《PloS one》2012,7(2):e32063
Streptococcus mutans plays an important role in biofilm formation on the tooth surface and is the primary causative agent of dental caries. The binding of S. mutans to the salivary pellicle is of considerable etiologic significance and is important in biofilm development. Recently, we produced NOD/SCID.e2f1(-/-) mice that show hyposalivation, lower salivary antibody, and an extended life span compared to the parent strain: NOD.e2f1(-/-). In this study we used NOD/SCID.e2f1(-/-) 4 or 6 mice to determine the roles of several salivary components in S. mutans colonization in vivo. S. mutans colonization in NOD/SCID.e2f1(-/-) mice was significantly increased when mice were pre-treated with human saliva or commercial salivary components. Interestingly, pre-treatment with secretory IgA (sIgA) at physiological concentrations promoted significant colonization of S. mutans compared with sIgA at higher concentrations, or with human saliva or other components. Our data suggest the principal effects of specific sIgA on S. mutans occur during S. mutans colonization, where the appropriate concentration of specific sIgA may serve as an anti-microbial agent, agglutinin, or an adherence receptor to surface antigens. Further, specific sIgA supported biofilm formation when the mice were supplied 1% sucrose water and a non-sucrose diet. The data suggests that there are multiple effects exerted by sIgA in S. mutans colonization, with synergistic effects evident under the condition of sIgA and limited nutrients on colonization in NOD/SCID.e2f1(-/-) mice. This is a new animal model that can be used to assess prevention methods for dental biofilm-dependent diseases such as dental caries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号