首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NRTI-based therapy used to treat AIDS can cause mitochondrial toxicity resulting from the incorporation of NRTIs into mitochondrial DNA by DNA polymerase gamma (pol gamma). Pol gamma has poor discrimination against many of the currently used NRTIs resulting in aborted DNA synthesis and subsequent depletion of mtDNA. Pol gamma readily incorporates ddCTP, ddITP and D4T-TP with an efficiency similar to the incorporation of normal nucleotides, whereas AZT-TP, CBV-TP, 3TC-TP and PMPApp act as moderate inhibitors to DNA synthesis. We have sought a structural explanation for the unique selection for NRTIs by the human pol gamma. A structural model of the human pol gamma was developed to ascertain the role of active site amino acids. One residue in particular, Y951 in motif B, is primarily responsible for the selection of dideoxynucleotides and D4T-TP. Our structural model of the human pol gamma should assist in rational design of antiviral nucleoside analogs with higher specificity for HIV-RT and minimal selection and incorporation into mitochondrial DNA.  相似文献   

2.
Mitochondrial toxicity can result from antiviral nucleotide analog therapy used to control human immunodeficiency virus type 1 infection. We evaluated the ability of such analogs to inhibit DNA synthesis by the human mitochondrial DNA polymerase (pol gamma) by comparing the insertion and exonucleolytic removal of six antiviral nucleotide analogs. Apparent steady-state K(m) and k(cat) values for insertion of 2',3'-dideoxy-TTP (ddTTP), 3'-azido-TTP (AZT-TP), 2',3'-dideoxy-CTP (ddCTP), 2',3'-didehydro-TTP (D4T-TP), (-)-2',3'-dideoxy-3'-thiacytidine (3TC-TP), and carbocyclic 2',3'-didehydro-ddGTP (CBV-TP) indicated incorporation of all six analogs, albeit with varying efficiencies. Dideoxynucleotides and D4T-TP were utilized by pol gamma in vitro as efficiently as natural deoxynucleotides, whereas AZT-TP, 3TC-TP, and CBV-TP were only moderate inhibitors of DNA chain elongation. Inefficient excision of dideoxynucleotides, D4T, AZT, and CBV from DNA predicts persistence in vivo following successful incorporation. In contrast, removal of 3'-terminal 3TC residues was 50% as efficient as natural 3' termini. Finally, we observed inhibition of exonuclease activity by concentrations of AZT-monophosphate known to occur in cells. Thus, although their greatest inhibitory effects are through incorporation and chain termination, persistence of these analogs in DNA and inhibition of exonucleolytic proofreading may also contribute to mitochondrial toxicity.  相似文献   

3.
Progressive external ophthalmoplegia (PEO) is a mitochondrial disorder associated with mutations in the POLG gene encoding the mitochondrial DNA polymerase (pol gamma). Four autosomal dominant mutations that cause PEO encode the amino acid substitutions G923D, R943H, Y955C and A957S in the polymerase domain of pol gamma. A homology model of the pol gamma catalytic domain in complex with DNA was developed to investigate the effects of these mutations. Two mutations causing the most severe disease phenotype, Y955C and R943H, change residues that directly interact with the incoming dNTP. Polymerase mutants exhibit 0.03-30% wild-type polymerase activity and a 2- to 35-fold decrease in nucleotide selectivity in vitro. The reduced selectivity and catalytic efficiency of the autosomal dominant PEO mutants predict in vivo dysfunction, and the extent of biochemical defects correlates with the clinical severity of the disease.  相似文献   

4.
Progressive external ophthalmoplegia (PEO) is a heritable mitochondrial disorder characterized by the accumulation of multiple point mutations and large deletions in mtDNA. Autosomal dominant PEO was recently shown to co-segregate with a heterozygous Y955C mutation in the human gene encoding the sole mitochondrial DNA polymerase, DNA polymerase gamma (pol gamma). Since Tyr-955 is a highly conserved residue critical for nucleotide recognition among family A DNA polymerases, we analyzed the effects of the Y955C mutation on the kinetics and fidelity of DNA synthesis by the purified human mutant polymerase in complex with its accessory subunit. The Y955C enzyme retains a wild-type catalytic rate (k(cat)) but suffers a 45-fold decrease in apparent binding affinity for the incoming nucleoside triphosphate (K(m)). The Y955C derivative is 2-fold less accurate for base pair substitutions than wild-type pol gamma despite the action of intrinsic exonucleolytic proofreading. The full mutator effect of the Y955C substitution was revealed by genetic inactivation of the exonuclease, and error rates for certain mismatches were elevated by 10-100-fold. The error-prone DNA synthesis observed for the Y955C pol gamma is consistent with the accumulation of mtDNA mutations in patients with PEO.  相似文献   

5.
Mutations in human mitochondrial DNA influence aging, induce severe neuromuscular pathologies, cause maternally inherited metabolic diseases, and suppress apoptosis. Since the genetic stability of mitochondrial DNA depends on the accuracy of DNA polymerase gamma (pol gamma), we investigated the fidelity of DNA synthesis by human pol gamma. Comparison of the wild-type 140-kDa catalytic subunit to its exonuclease-deficient derivative indicates pol gamma has high base substitution fidelity that results from high nucleotide selectivity and exonucleolytic proofreading. pol gamma is also relatively accurate for single-base additions and deletions in non-iterated and short repetitive sequences. However, when copying homopolymeric sequences longer than four nucleotides, pol gamma has low frameshift fidelity and also generates base substitutions inferred to result from a primer dislocation mechanism. The ability of pol gamma both to make and to proofread dislocation intermediates is the first such evidence for a family A polymerase. Including the p55 accessory subunit, which confers processivity to the pol gamma catalytic subunit, decreases frameshift and base substitution fidelity. Kinetic analyses indicate that p55 promotes extension of mismatched termini to lower the fidelity. These data suggest that homopolymeric runs in mitochondrial DNA may be particularly prone to frameshift mutation in vivo due to replication errors by pol gamma.  相似文献   

6.
The nature of conformational transitions in DNA polymerase lambda (pol lambda), a low-fidelity DNA repair enzyme in the X-family that fills short nucleotide gaps, is investigated. Specifically, to determine whether pol lambda has an induced-fit mechanism and open-to-closed transition before chemistry, we analyze a series of molecular dynamics simulations from both the binary and ternary states before chemistry, with and without the incoming nucleotide, with and without the catalytic Mg(2+) ion in the active site, and with alterations in active site residues Ile(492) and Arg(517). Though flips occurred for several side-chain residues (Ile(492), Tyr(505), Phe(506)) in the active site toward the binary (inactive) conformation and partial DNA motion toward the binary position occurred without the incoming nucleotide, large-scale subdomain motions were not observed in any trajectory from the ternary complex regardless of the presence of the catalytic ion. Simulations from the binary state with incoming nucleotide exhibit more thumb subdomain motion, particularly in the loop containing beta-strand 8 in the thumb, but closing occurred only in the Ile(492)Ala mutant trajectory started from the binary state with incoming nucleotide and both ions. Further connections between active site residues and the DNA position are also revealed through our Ile(492)Ala and Arg(517)Ala mutant studies. Our combined studies suggest that while pol lambda does not demonstrate large-scale subdomain movements as DNA polymerase beta (pol beta), significant DNA motion exists, and there are sequential subtle side chain and other motions-associated with Arg(514), Arg(517), Ile(492), Phe(506), Tyr(505), the DNA, and again Arg(514) and Arg(517)-all coupled to active site divalent ions and the DNA motion. Collectively, these motions transform pol lambda to the chemistry-competent state. Significantly, analogs of these residues in pol beta (Lys(280), Arg(283), Arg(258), Phe(272), and Tyr(271), respectively) have demonstrated roles in determining enzyme efficiency and fidelity. As proposed for pol beta, motions of these residues may serve as gate-keepers by controlling the evolution of the reaction pathway before the chemical reaction.  相似文献   

7.
Ternary complexes of wild type or mutant form of human DNA polymerase beta (pol beta) bound to DNA and dCTP substrates were studied by molecular dynamics (MD) simulations. The occurrences of contact configurations (CC) of structurally important atom pairs were sampled along the MD trajectories, and converted into free-energy differences, DeltaG(CC). DeltaG(CC) values were correlated with the experimental binding and catalytic free energies for the wild type pol beta and its Arg183Ala, Tyr271Ala, Asp276Val, Lys280Gly, Arg283Ala, and Glu295Ala mutants. The correlation coefficients show that the strength of the H-bond between dCTP and Asn279 is a strong predictor of the mutation-induced changes in the catalytic efficiency of pol beta. This finding is consistent with the view that enzyme preorganization plays a major role in controlling DNA polymerase specific activity.  相似文献   

8.
DNA polymerase (pol) λ is homologous to pol β and has intrinsic polymerase and terminal transferase activities. However, nothing is known about the amino acid residues involved in these activites. In order to precisely define the nucleotide-binding site of human pol λ, we have mutagenised two amino acids, Tyr505 and the neighbouring Phe506, which were predicted by structural homology modelling to correspond to the Tyr271 and Phe272 residues of pol β, which are involved in nucleotide binding. Our analysis demonstrated that pol λ Phe506Arg/Gly mutants possess very low polymerase and terminal transferase activities as well as greatly reduced abilities for processive DNA synthesis and for carrying on translesion synthesis past an abasic site. The Tyr505Ala mutant, on the other hand, showed an altered nucleotide binding selectivity to perform the terminal transferase activity. Our results suggest the existence of a common nucleotide-binding site for the polymerase and terminal transferase activities of pol λ, as well as distinct roles of the amino acids Tyr505 and Phe506 in these two catalytic functions.  相似文献   

9.
POLN is a nuclear A-family DNA polymerase encoded in vertebrate genomes. POLN has unusual fidelity and DNA lesion bypass properties, including strong strand displacement activity, low fidelity favoring incorporation of T for template G and accurate translesion synthesis past a 5S-thymine glycol (5S-Tg). We searched for conserved features of the polymerase domain that distinguish it from prokaryotic pol I-type DNA polymerases. A Lys residue (679 in human POLN) of particular interest was identified in the conserved ‘O-helix’ of motif 4 in the fingers sub-domain. The corresponding residue is one of the most important for controlling fidelity of prokaryotic pol I and is a nonpolar Ala or Thr in those enzymes. Kinetic measurements show that K679A or K679T POLN mutant DNA polymerases have full activity on nondamaged templates, but poorly incorporate T opposite template G and do not bypass 5S-Tg efficiently. We also found that a conserved Tyr residue in the same motif not only affects sensitivity to dideoxynucleotides, but also greatly influences enzyme activity, fidelity and bypass. Protein sequence alignment reveals that POLN has three specific insertions in the DNA polymerase domain. The results demonstrate that residues have been strictly retained during evolution that confer unique bypass and fidelity properties on POLN.  相似文献   

10.
In the present study, we investigated mammalian polymerases that consecutively incorporate various fluorophore-labeled nucleotides. We found that rat DNA polymerase β (pol β) consecutively incorporated fluorophore-labeled nucleotides to a greater extent than four bacterial polymerases, Sequenase Version 2.0, VentR (exo-), DNA polymerase IIIα and the Klenow fragment, and the mammalian polymerases DNA polymerase α and human DNA polymerase δ, under mesophilic conditions. Furthermore, we investigated the kinetics of correct or mismatched incorporation with labeled nucleotides during synthesis by rat pol β. The kinetic parameters Km and kcat were measured and used for evaluating: (i) the discrimination against correct pair incorporation of labeled nucleotides relative to unlabeled nucleotides; and (ii) the fidelity for all nucleotide combinations of mismatched pairs in the presence of labeled or unlabeled nucleotides. We also investigated the effect of fluorophore-labeled nucleotides on terminal deoxynucleotidyl transferase activity of rat pol β. We have demonstrated for the first time that mammalian pol β can consecutively incorporate various fluorophore-labeled dNTPs. These findings suggest that pol β is useful for high-density labeling of DNA probes and single-molecule sequencing for high-speed genome analysis.  相似文献   

11.
12.
We have analyzed the divalent cation specificity of poliovirus RNA-dependent RNA polymerase, 3D(pol). The following preference was observed: Mn(2+) > Co(2+) > Ni(2+) > Fe(2+) > Mg(2+) > Ca(2+) > Cu(2+), and Zn(2+) was incapable of supporting 3D(pol)-catalyzed nucleotide incorporation. In the presence of Mn(2+), 3D(pol) activity was increased by greater than 10-fold relative to that in the presence of Mg(2+). Steady-state kinetic analysis revealed that the increased activity observed in the presence of Mn(2+) was due, primarily, to a reduction in the K(M) value for 3D(pol) binding to primer/template, without any significant effect on the K(M) value for nucleotide. The ability of 3D(pol) to catalyze RNA synthesis de novo was also stimulated approximately 10-fold by using Mn(2+), and the enzyme was now capable of also utilizing a DNA template for primer-independent RNA synthesis. Interestingly, the use of Mn(2+) as divalent cation permitted 3D(pol) activity to be monitored by following extension of 5'-(32)P-end-labeled, heteropolymeric RNA primer/templates. The kinetics of primer extension were biphasic because of the enzyme binding to primer/template in both possible orientations. When bound in the incorrect orientation, 3D(pol) was capable of efficient addition of nucleotides to the blunt-ended duplex; this activity was also apparent in the presence of Mg(2+). In the presence of Mn(2+), 3D(pol) efficiently utilized dNTPs, ddNTPs, and incorrect NTPs. On average, three incorrect nucleotides could be incorporated by 3D(pol). The ability of 3D(pol) to incorporate the correct dNTP, but not the correct ddNTP, was also observed in the presence of Mg(2+). Taken together, these results provide the first glimpse into the nucleotide specificity and fidelity of the poliovirus polymerase and suggest novel alternatives for the design of primer/templates to study the mechanism of 3D(pol)-catalyzed nucleotide incorporation.  相似文献   

13.
This report evaluates the pro-mutagenic behavior of 8-oxo-guanine (8-oxo-G) by quantifying the ability of high-fidelity and specialized DNA polymerases to incorporate natural and modified nucleotides opposite this lesion. Although high-fidelity DNA polymerases such as pol δ and the bacteriophage T4 DNA polymerase replicating 8-oxo-G in an error-prone manner, they display remarkably low efficiencies for TLS compared to normal DNA synthesis. In contrast, pol η shows a combination of high efficiency and low fidelity when replicating 8-oxo-G. These combined properties are consistent with a pro-mutagenic role for pol η when replicating this DNA lesion. Studies using modified nucleotide analogs show that pol η relies heavily on hydrogen-bonding interactions during translesion DNA synthesis. However, nucleobase modifications such as alkylation to the N2 position of guanine significantly increase error-prone synthesis catalyzed by pol η when replicating 8-oxo-G. Molecular modeling studies demonstrate the existence of a hydrophobic pocket in pol η that participates in the increased utilization of certain hydrophobic nucleotides. A model is proposed for enhanced pro-mutagenic replication catalyzed by pol η that couples efficient incorporation of damaged nucleotides opposite oxidized DNA lesions created by reactive oxygen species. The biological implications of this model toward increasing mutagenic events in lung cancer are discussed.  相似文献   

14.
This paper summarizes recent advances in understanding the links between the cell's ability to maintain integrity of its mitochondrial genome and mitochondrial genetic diseases. Human mitochondrial DNA is replicated by the two-subunit DNA polymerase gamma (polgamma). We investigated the fidelity of DNA replication by polgamma with and without exonucleolytic proofreading and its p55 accessory subunit. Polgamma has high base substitution fidelity due to efficient base selection and exonucleolytic proofreading, but low frameshift fidelity when copying homopolymeric sequences longer than four nucleotides. Progressive external ophthalmoplegia (PEO) is a rare disease characterized by the accumulation of large deletions in mitochondrial DNA. Recently, several mutations in the polymerase and exonuclease domains of the human polgamma have been shown to be associated with PEO. We are analyzing the effect of these mutations on the human polgamma enzyme. In particular, three autosomal dominant mutations alter amino acids located within polymerase motif B of polgamma. These residues are highly conserved among family A DNA polymerases, which include T7 DNA polymerase and E.coli pol I. These PEO mutations have been generated in polgamma to analyze their effects on overall polymerase function as well as the effects on the fidelity of DNA synthesis. One mutation in particular, Y955C, was found in several families throughout Europe, including one Belgian family and five unrelated Italian families. The Y955C mutant polgamma retains a wild-type catalytic rate but suffers a 45-fold decrease in apparent binding affinity for the incoming dNTP. The Y955C derivative is also much less accurate than is wild-type polgamma, with error rates for certain mismatches elevated by 10- to 100-fold. The error prone DNA synthesis observed for the Y955C polgamma is consistent with the accumulation of mtDNA mutations in patients with PEO. The effects of other polgamma mutations associated with PEO are discussed.  相似文献   

15.
Arnold JJ  Cameron CE 《Biochemistry》2004,43(18):5126-5137
We have solved the complete kinetic mechanism for correct nucleotide incorporation catalyzed by the RNA-dependent RNA polymerase from poliovirus, 3D(pol). The phosphoryl-transfer step is flanked by two isomerization steps. The first conformational change may be related to reorientation of the triphosphate moiety of the bound nucleotide, and the second conformational change may be translocation of the enzyme into position for the next round of nucleotide incorporation. The observed rate constant for nucleotide incorporation by 3D(pol) (86 s(-1)) is dictated by the rate constants for both the first conformational change (300 s(-1)) and phosphoryl transfer (520 s(-1)). Changes in the stability of the "activated" ternary complex correlate best with changes in the observed rate constant for incorporation resulting from modification of the nucleotide. With the exception of UTP, the K(d) values for nucleotides are at least 10-fold lower than the cellular concentration of the corresponding nucleotide. Our data predict that transition mutations should occur at a frequency of 1/15000, transversion mutations should occur at a frequency of less than 1/150000, and incorporation of a 2'-deoxyribonucleotide with a correct base should occur at a frequency 1/7500. Together, these data support the conclusion that 3D(pol) is actually as faithful as an exonuclease-deficient, replicative DNA polymerase. We discuss the implications of this work on the development of RNA-dependent RNA polymerase inhibitors for use as antiviral agents.  相似文献   

16.
Functional interactions between mitochondrial DNA polymerase (pol gamma) and mitochondrial single-stranded DNA-binding protein (mtSSB) from Drosophila embryos have been evaluated with regard to the overall activity of pol gamma and in partial reactions involving template-primer binding and initiation and idling in DNA strand synthesis. Both the 5' --> 3' DNA polymerase and 3' --> 5' exonuclease in pol gamma are stimulated 15-20-fold on oligonucleotide-primed single-stranded DNA by native and recombinant forms of mtSSB. That the extent of stimulation is similar for both enzyme activities over a broad range of KCl concentrations suggests their functional coordination and a similar mechanism of stimulation by mtSSB. At the same time, the high mispair specificity of pol gamma in exonucleolytic hydrolysis is maintained, indicating that enhancement of pol gamma catalytic efficiency is likely not accompanied by increased nucleotide turnover. DNase I footprinting of pol gamma.DNA complexes and initial rate measurements show that mtSSB enhances primer recognition and binding and stimulates 30-fold the rate of initiation of DNA strands. Dissociation studies show that productive complexes of the native pol gamma heterodimer with template-primer DNA are formed and remain stable in the absence of replication accessory proteins.  相似文献   

17.
Mitochondrial DNA polymerase (pol gamma) is the sole DNA polymerase responsible for replication and repair of animal mitochondrial DNA. Here, we address the molecular mechanism by which the human holoenzyme achieves high processivity in nucleotide polymerization. We have determined the crystal structure of human pol gamma-beta, the accessory subunit that binds with high affinity to the catalytic core, pol gamma-alpha, to stimulate its activity and enhance holoenzyme processivity. We find that human pol gamma-beta shares a high level of structural similarity to class IIa aminoacyl tRNA synthetases, and forms a dimer in the crystal. A human pol gamma/DNA complex model was developed using the structures of the pol gamma-beta dimer and the bacteriophage T7 DNA polymerase ternary complex, which suggests multiple regions of subunit interaction between pol gamma-beta and the human catalytic core that allow it to encircle the newly synthesized double-stranded DNA, and thereby enhance DNA binding affinity and holoenzyme processivity. Biochemical properties of a novel set of human pol gamma-beta mutants are explained by and test the model, and elucidate the role of the accessory subunit as a novel type of processivity factor in stimulating pol gamma activity and in enhancing processivity.  相似文献   

18.
Lee H  Hanes J  Johnson KA 《Biochemistry》2003,42(50):14711-14719
Incorporation of nucleoside analogues by the mitochondrial DNA polymerase has been implicated as the primary cause underlying many of the toxic side effects of these drugs in HIV therapy. Recent success in reconstituting recombinant human enzyme has afforded a detailed mechanistic analysis of the reactions governing nucleotide selectivity of the polymerase and the proofreading exonuclease. The toxic side effects of nucleoside analogues are correlated with the kinetics of incorporation by the mitochondrial DNA polymerase, varying over 6 orders of magnitude in the sequence zalcitabine (ddC) > didanosine (ddI metabolized to ddA) > stavudine (d4T) > lamivudine (3TC) > tenofovir (PMPA) > zidovudine (AZT) > abacavir (metabolized to carbovir, CBV). In this review, we summarize our current efforts to examine the mechanistic basis for nucleotide selectivity by the mitochondrial DNA polymerase and its role in mitochondrial toxicity of nucleoside analogues used to treat AIDS and other viral infections. We will also discuss the promise and underlying challenges for the development of new analogues with lower toxicity.  相似文献   

19.
20.
The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase eta (pol eta), which is involved in the replication of damaged DNA. Pol eta catalyzes efficient and accurate translesion synthesis past cis-syn cyclobutane di-thymine lesions. Here we show that human pol eta can catalyze translesion synthesis past an abasic (AP) site analog, N-2-acetylaminofluorene (AAF)-modified guanine, and a cisplatin-induced intrastrand cross-link between two guanines. Pol eta preferentially incorporated dAMP and dGMP opposite AP, and dCMP opposite AAF-G and cisplatin-GG, but other nucleotides were also incorporated opposite these lesions. However, after incorporating an incorrect nucleotide opposite a lesion, pol eta could not continue chain elongation. In contrast, after incorporating the correct nucleotide opposite a lesion, pol eta could continue chain elongation, whereas pol alpha could not. Thus, the fidelity of translesion synthesis by human pol eta relies not only on the ability of this enzyme to incorporate the correct nucleotide opposite a lesion, but also on its ability to elongate only DNA chains that have a correctly incorporated nucleotide opposite a lesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号