首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Import of nuclear-encoded mitochondrial preproteins is mediated by a general translocase in the outer membrane, the TOM complex, and by two distinct translocases in the mitochondrial inner membrane, the TIM23 complex and the TIM22 complex. Both TIM complexes cooperate with the TOM complex but facilitate import of different classes of precursor proteins. Precursors with an N-terminal presequence are imported via the TIM23 complex, whereas mitochondrial carrier proteins require the TIM22 complex for insertion into the inner membrane. This review discusses recent advances in understanding the structure and function of the translocases of the inner membrane and the possible role of Tim proteins in the development of the Mohr-Tranebjaerg syndrome, a mitochondrial disorder leading to neurodegeneration.  相似文献   

2.
Mitochondrial preproteins synthesized in the cytosol are imported through the mitochondrial outer membrane by the translocase of the outer mitochondrial membrane (TOM) complex. Tom40 is the major component of the complex and is essential for cell viability. We generated 21 different mutations in conserved regions of the Neurospora crassa Tom40 protein. The mutant genes were transformed into a tom40 null nucleus maintained in a sheltered heterokaryon, and 17 of the mutant genes gave rise to viable strains. All mutations reduced the efficiency of the altered Tom40 molecules to assemble into the TOM complex. Mitochondria isolated from seven of the mutant strains had defects for importing mitochondrial preproteins. Only one strain had a general import defect for all preproteins examined. Another mutation resulted in defects in the import of a matrix-destined preprotein and an outer membrane beta-barrel protein, but import of the ADP/ATP carrier to the inner membrane was unaffected. Five strains showed deficiencies in the import of beta-barrel proteins. The latter results suggest that the TOM complex distinguishes beta-barrel proteins from other classes of preprotein during import. This supports the idea that the TOM complex plays an active role in the transfer of preproteins to subsequent translocases for insertion into the correct mitochondrial subcompartment.  相似文献   

3.
Biogenesis of mitochondria requires import of several hundreds of different nuclear-encoded preproteins needed for mitochondrial structure and function. Import and sorting of these preproteins is a multistep process facilitated by complex proteinaceous machineries located in the mitochondrial outer and inner membranes. The translocase of the mitochondrial outer membrane, the TOM complex, comprises receptors which specifically recognize mitochondrial preproteins and a protein conducting channel formed by TOM40. The TOM complex is able to insert resident proteins into the outer membrane and to translocate proteins into the intermembrane space. For import of inner membrane or matrix proteins, the TOM complex cooperates with translocases of the inner membrane, the TIM complexes. During the past 30 years, intense research on fungi enabled the identification and mechanistic characterization of a number of different proteins involved in protein translocation. This review focuses on the contributions of the filamentous fungus Neurospora crassa to our current understanding of mitochondrial protein import, with special emphasis on the structure and function of the TOM complex.  相似文献   

4.
Most mitochondrial proteins are transported from the cytosol into the or-ganelle. Due to the division of mitochondria into an outer and inner membrane, an inter-membrane space and a matrix, an elaborated system for recognition and transport of preproteins has evolved. The translocase of the outer mitochondrial membrane (TOM) and the translocases of the inner mitochondrial membrane (TIM) mediate these processes. Receptor proteins on the cytosolic face of mitochondria recognize the cargo proteins and transfer them to the general import pore (GIP) of the outer membrane. Following the passage of preproteins through the outer membrane they are transported with the aid of the TIM23 complex into either the matrix, inner membrane, or intermembrane space. Some preprotein families utilize the TIM22 complex for their insertion into the inner membrane. The identification of protein components, which are involved in these transport processes, as well as significant insights into the molecular function of some of them, has been achieved in recent years. Moreover, we are now approaching a new era in which elaborated techniques have already allowed and will enable us to gather information about the TOM and TIM complexes on an ultrastructural level.  相似文献   

5.
Mitochondria import more than 1,000 different proteins from the cytosol. The proteins are synthesized as precursors on cytosolic ribosomes and are translocated by protein transport machineries of the mitochondrial membranes. Five main pathways for protein import into mitochondria have been identified. Most pathways use the translocase of the outer mitochondrial membrane (TOM) as the entry gate into mitochondria. Depending on specific signals contained in the precursors, the proteins are subsequently transferred to different intramitochondrial translocases. In this article, we discuss the connection between protein import and mitochondrial membrane architecture. Mitochondria possess two membranes. It is a long‐standing question how contact sites between outer and inner membranes are formed and which role the contact sites play in the translocation of precursor proteins. A major translocation contact site is formed between the TOM complex and the presequence translocase of the inner membrane (TIM23 complex), promoting transfer of presequence‐carrying preproteins to the mitochondrial inner membrane and matrix. Recent findings led to the identification of contact sites that involve the mitochondrial contact site and cristae organizing system (MICOS) of the inner membrane. MICOS plays a dual role. It is crucial for maintaining the inner membrane cristae architecture and forms contacts sites to the outer membrane that promote translocation of precursor proteins into the intermembrane space and outer membrane of mitochondria. The view is emerging that the mitochondrial protein translocases do not function as independent units, but are embedded in a network of interactions with machineries that control mitochondrial activity and architecture.  相似文献   

6.
The mitochondrial inner membrane harbors complexes of the respiratory chain and translocase complexes for preproteins. The membrane potential generated by the respiratory chain is essential for ATP production by the mitochondrial ATP synthase and as a driving force for protein import. It is generally believed that the preprotein translocases just use the membrane potential without getting into physical contact with respiratory-chain complexes. Here, we show that the presequence translocase interacts with the respiratory chain. Tim21, a specific subunit of the sorting-active presequence translocase , recruits proton-pumping respiratory-chain complexes and stimulates preprotein insertion. Thus, the presequence translocase cooperates with the respiratory chain and promotes membrane-potential-dependent protein sorting into the inner mitochondrial membrane. These findings suggest a new coupling mechanism in an energy-transducing membrane.  相似文献   

7.
Most mitochondrial proteins are transported from the cytosol into the organelle. Due to the division of mitochondria into an outer and inner membrane, an intermembrane space and a matrix, an elaborated system for recognition and transport of preproteins has evolved. The translocase of the outer mitochondrial membrane (TOM) and the translocases of the inner mitochondrial membrane (TIM) mediate these processes. Receptor proteins on the cytosolic face of mitochondria recognize the cargo proteins and transfer them to the general import pore (GIP) of the outer membrane. Following the passage of preproteins through the outer membrane they are transported with the aid of the TIM23 complex into either the matrix, inner membrane, or intermembrane space. Some preprotein families utilize the TIM22 complex for their insertion into the inner membrane. The identification of protein components, which are involved in these transport processes, as well as significant insights into the molecular function of some of them, has been achieved in recent years. Moreover, we are now approaching a new era in which elaborated techniques have already allowed and will enable us to gather information about the TOM and TIM complexes on an ultrastructural level.  相似文献   

8.
Protein translocation into mitochondria   总被引:4,自引:0,他引:4  
The biogenesis of mitochondria requires the translocation of most mitochondrial proteins across two biological membranes. Mitochondrial preproteins are synthesized in the cytosol carrying targeting information, that is recognized by specific receptor proteins. The precursor polypeptides are transported across both mitochondrial membranes via three large integral membrane protein complexes forming specialized preprotein translocases. A soluble protein complex in the matrix provides the ATP-dependent translocation force, responsible for the movement and unfolding of the bulk polypeptide chain. After the removal of the targeting sequence, imported proteins fold into their native conformation with the help of chaperone proteins in the mitochondrial matrix.  相似文献   

9.
Translocation of preproteins across the mitochondrial outer membrane is mediated by the TOM complex. This complex consists of receptor components for the initial contact with preproteins at the mitochondrial surface and membrane-embedded proteins which promote transport and form the translocation pore. In order to understand the interplay between the translocating preprotein and the constituents of the TOM complex, we analyzed the dynamics of the TOM complex of Neurospora crassa and Saccharomyces cerevisiae mitochondria by following the structural alterations of the essential pore component Tom40 during the translocation of preproteins. Tom40 exists in a homo-oligomeric assembly and dynamically interacts with Tom6. The Tom40 assembly is influenced by a block of negatively charged amino acid residues in the cytosolic domain of Tom22, indicating a cross-talk between preprotein receptors and the translocation pore. Preprotein binding to specific sites on either side of the outer membrane (cis and trans sites) induces distinct structural alterations of Tom40. To a large extent, these changes are mediated by interaction with the mitochondrial targeting sequence. We propose that such targeting sequence-induced adaptations are a critical feature of translocases in order to facilitate the movement of preproteins across cellular membranes.  相似文献   

10.
The majority of mitochondrial proteins are synthesized with amino-terminal signal sequences. The presequence translocase of the inner membrane (TIM23 complex) mediates the import of these preproteins. The essential TIM23 core complex closely cooperates with partner protein complexes like the presequence translocase-associated import motor and the respiratory chain. The inner mitochondrial membrane also contains a large number of metabolite carriers, but their association with preprotein translocases has been controversial. We performed a comprehensive analysis of the TIM23 interactome based on stable isotope labeling with amino acids in cell culture. Subsequent biochemical studies on identified partner proteins showed that the mitochondrial ADP/ATP carrier associates with the membrane-embedded core of the TIM23 complex in a stoichiometric manner, revealing an unexpected connection of mitochondrial protein biogenesis to metabolite transport. Our data indicate that direct TIM23-AAC coupling may support preprotein import into mitochondria when respiratory activity is low.  相似文献   

11.
Proteomic studies have demonstrated that yeast mitochondria contain roughly 1000 different proteins. Only eight of these proteins are encoded by the mitochondrial genome and are synthesized on mitochondrial ribosomes. The remaining 99% of mitochondrial precursors are encoded within the nuclear genome and after their synthesis on cytosolic ribosomes must be imported into the organelle. Targeting of these proteins to mitochondria and their import into one of the four mitochondrial subcompartments--outer membrane, intermembrane space (IMS), inner membrane and matrix--requires various membrane-embedded protein translocases, as well as numerous chaperones and cochaperones in the aqueous compartments. During the last years, several novel protein components involved in the import and assembly of mitochondrial proteins have been identified. The picture that emerges from these exciting new findings is that of highly dynamic import machineries, rather than of regulated, but static protein complexes. In this review, we will give an overview on the recent progress in our understanding of mitochondrial protein import. We will focus on the presequence translocase of the inner mitochondrial membrane, the TIM23 complex and the presequence translocase-associated motor, the PAM complex. These two molecular machineries mediate the multistep import of preproteins with cleavable N-terminal signal sequences into the matrix or inner membrane of mitochondria.  相似文献   

12.
Preprotein import into mitochondria is mediated by translocases located in the outer and inner membranes (Tom and Tim) and a matrix Hsp70-Tim44 driving system. By blue native electrophoresis, we identify an approximately 90K complex with assembled Tim23 and Tim17 as the core of the inner membrane import site for presequence-containing preproteins. Preproteins spanning the two membranes link virtually all Tim core complexes with one in four Tom complexes in a stable 600K supercomplex. Neither mtHsp70 nor Tim44 are present in stoichiometric amounts in the 600K complex. Preproteins in transit stabilize the Tim core complex, preventing an exchange of subunits. Our studies define a central role for the Tim core complexes in mitochondrial protein import; they are not passive diffusion channels, but can stably interact with preproteins and determine the number of translocation contact sites. We propose the hypothesis that mtHsp70 functions in protein import not only by direct interaction with preproteins, but also by exerting a regulatory effect on the Tim channel.  相似文献   

13.
Translocation of nuclear-encoded mitochondrial preproteins is mediated by translocases in the outer and inner membranes. In the yeast Saccharomyces cerevisiae, translocation of preproteins into the matrix requires the membrane proteins Tim23, Tim17 and Tim44, which drive translocation in cooperation with mtHsp70 and its co-chaperone Mge1p. We have cloned and functionally analyzed the human homologues of Tim17, Tim23 and Tim44. In contrast to yeast, two TIM17 genes were found to be expressed in humans. TIM44, TIM23 and TIM17a genes were mapped to chromosomes 19p13.2-p13.3, 10q11. 21-q11.23 and 1q32. The TIM17b gene mapped to Xp11.23, near the fusion point where an autosomal region was proposed to have been added to the "ancient" part of the X chromosome about 80-130 MY ago. The primary sequences of the two proteins, hTim17a and hTim17b, are essentially identical, significant differences being restricted to their C termini. They are ubiquitously expressed in fetal and adult tissues, and both show expression levels comparable to that of hTim23. Biochemical characterization of the human Tim components revealed that hTim44 is localized in the matrix and, in contrast to yeast, only loosely associated with the inner membrane. hTim23 is organized into two distinct complexes in the inner membrane, one containing hTim17a and one containing hTim17b. Both TIM complexes display a native molecular mass of 110 kDa. We suggest that the structural organization of TIM23.17 preprotein translocases is conserved from low to high eukaryotes.  相似文献   

14.
Activity of the Tat machinery for protein transport across the inner membrane of Escherichia coli and the chloroplast thylakoidal membrane requires the presence of three membrane proteins: TatA, TatB and TatC. Here, we show that the Tat machinery of the Gram-positive bacterium Bacillus subtilis is very different because it contains at least two minimal Tat translocases, each composed of one specific TatA and one specific TatC component. A third, TatB-like component is apparently not required. This implies that TatA proteins of B. subtilis perform the functions of both TatA and TatB of E. coli and thylakoids. Notably, the two B. subtilis translocases named TatAdCd and TatAyCy both function as individual, substrate-specific translocases for the twin-arginine preproteins PhoD and YwbN, respectively. Importantly, these minimal TatAC translocases of B. subtilis are representative for the Tat machinery of the vast majority of Gram-positive bacteria, Streptomycetes being the only known exception with TatABC translocases.  相似文献   

15.
Translocation of nuclear encoded preproteins into the mitochondrial matrix requires the coordinated action of two translocases: one (Tom) located in the outer mitochondrial membrane and the other (Tim) located in the inner membrane. These translocases reversibly cooperate during protein import. We have previously constructed a chimeric precursor (pPGPrA) consisting of an authentic mitochondrial precursor at the N terminus (Delta(1)-pyrroline-5-carboxylate dehydrogenase, pPut) linked, through glutathione S-transferase, to protein A. When pPGPrA is expressed in yeast, it becomes irreversibly arrested during translocation across the outer and inner mitochondrial membranes. Consequently, the two membranes of mitochondria become progressively "zippered" together, forming long stretches in which they are in close contact (Schülke, N., Sepuri, N. B. V., and Pain, D. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 7314-7319). We now demonstrate that trapped PGPrA intermediates hold the import channels stably together and inhibit mitochondrial protein import and cell growth. Using IgG-Sepharose affinity chromatography of solubilized zippered membranes, we have isolated a multisubunit complex that contains all Tom and Tim components known to be essential for import of matrix-targeted proteins, namely Tom40, Tom22, Tim17, Tim23, Tim44, and matrix-localized Hsp70. Further characterization of this complex may shed light on structural features of the complete mitochondrial import machinery.  相似文献   

16.
The ADP/ATP carrier (AAC) is the major representative of the inner membrane carrier proteins of mitochondria that are synthesized without cleavable presequences. The characterization of the import pathway of AAC into mitochondria has mainly depended on an operational staging system. Here, we introduce two approaches for analyzing the import of AAC, blue native electrophoresis and folding-induced translocation arrest, that allow a functional staging of AAC transport across the outer membrane. (i) Blue native electrophoresis permits a direct monitoring of the receptor stage of AAC and its chase into mitochondria. Binding to this stage requires the receptor protein Tom70 but not Tom37 or Tom20. (ii) A fusion protein between AAC and dihydrofolate reductase can be selectively arrested in the general import pore complex of the outer membrane by ligand induced folding of the passenger protein. Cross-linking demonstrates that the arrested preprotein is in close contact not only with several receptors and Tim10 but also with the channel protein Tom40, providing the first direct evidence that cleavable preproteins and carrier preproteins interact with the same outer membrane channel. The staging system presented here permits a molecular dissection of AAC transport across the outer mitochondrial membrane, relates it to functional units of the translocases, and indicates a coordinated and successive cooperation of distinct translocase subcomplexes during transfer of the preprotein.  相似文献   

17.
Role of Tim21 in mitochondrial translocation contact sites   总被引:9,自引:0,他引:9  
Translocation of preproteins with N-terminal presequences into mitochondria requires the cooperation of the translocase of the outer membrane (TOM complex) and the presequence translocase of the inner membrane (TIM23 complex). However, the molecular nature of the translocation contact sites is poorly understood. We have identified a novel component of the TIM23 translocase, Tim21, which is involved in their formation. Tim21 is anchored in the mitochondrial inner membrane by a single transmembrane domain and exposes its C-terminal domain into the intermembrane space. The purified C-terminal domain of Tim21 appears not to bind to any of the TIM23 components but rather specifically interacts with the TOM complex. We propose that Tim21 binds to the trans site of the TOM complex thus keeping the two translocases in close contact.  相似文献   

18.
Many mitochondrial proteins are synthesized as preproteins carrying amino-terminal presequences in the cytosol. The preproteins are imported by the translocase of the outer mitochondrial membrane and the presequence translocase of the inner membrane. Tim50 and Tim23 transfer preproteins through the intermembrane space to the inner membrane. We report the crystal structure of the intermembrane space domain of yeast Tim50 to 1.83 Å resolution. A protruding β-hairpin of Tim50 is crucial for interaction with Tim23, providing a molecular basis for the cooperation of Tim50 and Tim23 in preprotein translocation to the protein-conducting channel of the mitochondrial inner membrane.  相似文献   

19.
Aqueous channels are at the core of the translocase of the outer membrane (TOM) and the translocase of the inner membrane for the transport of preproteins (TIM23), the translocases mediating the transport of proteins across the outer and inner mitochondrial membranes. Yet, the existence of a channel associated to the translocase of the inner membrane for the insertion of multitopic protein (TIM22) complex has been arguable, as its function relates to the insertion of multispanning proteins into the inner membrane. For the first time, we report conditions for detecting a channel activity associated to the TIM22 translocase in organelle, i.e. intact mitoplasts. An internal signal peptide in the intermembrane space of mitochondria is a requisite to inducing this channel, which is otherwise silent. The channel showed slightly cationic and high conductance activity of 1000 pS with a predominant half-open substate. Despite their different composition, the channels of the three mitochondrial translocases were thus remarkably similar, in agreement with their common task as pores transiently trapping proteins en route to their final destination. The opening of the TIM22 channel was a step-up process depending on the signal peptide concentration. Interestingly, low membrane potentials kept the channel fully open, providing a threshold level of the peptide is present. Our results portray TIM22 as a dynamic channel solely active in the presence of its cargo proteins. In its fully open conformation, favored by the combined action of internal signal peptide and low membrane potential, the channel could embrace the in-transit protein. As insertion progressed and initial interaction with the signal peptide faded, the channel would close, sustaining its role as a shunt that places trapped proteins into the membrane.  相似文献   

20.
The essential yeast gene MPI1 encodes a mitochondrial membrane protein that is possibly involved in protein import into the organelle (A. C. Maarse, J. Blom, L. A. Grivell, and M. Meijer, EMBO J. 11:3619-3628, 1992). For this report, we determined the submitochondrial location of the MPI1 gene product and investigated whether it plays a direct role in the translocation of preproteins. By fractionation of mitochondria, the mature protein of 44 kDa was localized to the mitochondrial inner membrane and therefore termed MIM44. Import of the precursor of MIM44 required a membrane potential across the inner membrane and involved proteolytic processing of the precursor. A preprotein in transit across the mitochondrial membranes was cross-linked to MIM44, whereas preproteins arrested on the mitochondrial surface or fully imported proteins were not cross-linked. When preproteins were arrested at two distinct stages of translocation across the inner membrane, only preproteins at an early stage of translocation could be cross-linked to MIM44. Moreover, solubilized MIM44 was found to interact with in vitro-synthesized preproteins. We conclude that MIM44 is a component of the mitochondrial inner membrane import machinery and interacts with preproteins in an early step of translocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号