首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the effects of medium salt strength and ammonia/nitrate ratio on biomass production and metabolites accumulation of adventitious root. The medium with full-strength Murashige and Skoog (MS) reached the highest growth rate (16.77), and the contents of saponin and polysaccharide reached the peak (i.e., 0.65 and 24.85 %) at 3/4 MS and 1 MS, respectively. In case of ammonia/nitrate ratio, a NH4 +/NO3 ? ratio of 20:40 was optimal for the production of biomass and polysaccharide (23.27 %). In contrast, the content of saponin achieved the optimum (0.74 %) at a NH4 +/NO3 ? ratio of 30:30. In 5-L balloon-type bubble bioreactor (BTBB) cultures, an approximately 23-fold increase in biomass was recorded. The fresh weight (FW) and dry weight (DW) were 72.78 and 6.79 g per bioreactor with the contents of saponin (0.62 %) and polysaccharide (17.32 %), respectively. It indicated potential application to produce adventitious roots of pseudostellaria heterophylla with bioreactors on large scale in commercial.  相似文献   

2.
In an attempt to scale-up of adventitious root cultures of Echinacea angustifolia for the production of biomass and caffeic acid derivatives, i.e. echinacoside, chlorogenic acid, cichoric acid, caftaric acid, and cynarin, the effects of Murashige and Skoog (MS) medium dilutions, and initial sucrose concentrations were investigated in a 5-L airlift bioreactor. In addition, the kinetics of adventitious root growth and accumulation of secondary metabolites were also studied. The greatest root dry weight (6.50 g L?l) and accumulation of total phenolics [22.06 mg g?1 DW (dry weight)], total flavonoids (5.77 mg g?1 DW) and total caffeic acid derivatives (10.63 mg g?1 DW) were obtained at quarter-strength MS medium. Of the various gradients of sucrose tested, 5 % sucrose supplementation was regarded as an optimal concentration for enhancing productivity of biomass and bioactive compounds. Neither higher salt strength (3/4–2 MS) nor sucrose concentrations (7 and 9 %) showed promotive effect on root growth and metabolite production. The kinetic studies revealed that 4 weeks of culture period is the optimal time to achieve highest productivity of metabolites. Based on these results, a large-scale (20 L) and a pilot-scale (500 L) adventitious root culture system was established. In the pilot-scale bioreactor, adventitious roots were elicitor-treated with 100 μM methyl jasmonate (MJ) on day 28. After 1 week of elicitation, 1.75 kg dry root biomass was harvested containing 60.41 mg g?1 DW of total phenolics, 16.45 mg g?1 DW of total flavonoids, and 33.44 mg g?1 DW of total caffeic acid derivatives. Among the caffeic acid derivatives, the accumulation of echinacoside (the major bioactive compound) in MJ-treated adventitious roots grown in the 500-L bioreactor was the highest (12.3 mg g?1 DW), which is approximately threefold more than the non-MJ-treated roots cultured in 5- and 20-L bioreactors.  相似文献   

3.
The effect of culture medium nutrients on growth and alkaloid production by plant cell cultures of Nothapodytes nimmoniana (J. Grah.) Mabberley (Icacinaceae) was studied with a view to increasing the production of the alkaloid camptothecin, a key therapeutic drug used for its anticancer properties. Amongst the various sugars tested with Murashige and Skoog (MS) medium, such as glucose, fructose, maltose, and sucrose, maximum accumulation of camptothecin was observed with sucrose. High nitrate in the media supports the biomass, while high ammonium enhances the camptothecin content. Selective feeding of 60 mM total nitrogen with a NH4 +/NO3 ? balance of 5/1 on day 15 of the culture cycle results in a 2.4-fold enhancement in the camptothecin content over the control culture (28.5 μg/g DW). Furthermore, the sucrose feeding strategy greatly stimulated cell biomass and camptothecin production. A modified MS medium was developed in the present study, which contained 0.5 mM phosphate, a nitrogen source feeding ratio of 50/10 mM NH4 +/NO3 ? and 3 % sucrose with additional 2 % sucrose feeding (added on day 12 of the cell culture cycle) with 10.74 μM naphthaleneacetic acid and 0.93 μM kinetin. Finally, the selective medium has 1.7- and 2.3-fold higher intracellular and extracellular camptothecin content over the control culture (29.2 and 8.2 μg/g DW), respectively.  相似文献   

4.
Stevia rebaudiana (S. rebaudiana) is the most important therapeutic plant species and has been accepted as such worldwide. It has a tendency to accumulate steviol glycosides, which are 300 times sweeter than marketable sugar. Recently, diabetic patients commonly use this plant as a sugar substitute for sweet taste. In the present study, the effects of different spectral lights were investigated on biomass accumulation and production of secondary metabolites in adventitious root cultures of S. rebaudiana. For callus development, leaf explants were excised from seed-derived plantlets and inoculated on a Murashige and Skoog (MS) medium containing the combination of 2,4-dichlorophenoxy acetic acid (2, 4-D, 2.0 mg/l) and 6-benzyladenine (BA, 2.0 mg/l), while 0.5 mg/l naphthalene acetic acid (NAA) was used for adventitious root culture. Adventitious root cultures were exposed to different spectral lights (blue, green, violet, red and yellow) for a 30-day period. White light was used as control. The growth kinetics was studied for 30 days with 3-day intervals. In this study, the violet light showed the maximum accumulation of fresh biomass (2.495 g/flask) as compared to control (1.63 g/flask), while red light showed growth inhibition (1.025 g/flask) as compared to control. The blue light enhanced the highest accumulation of phenolic content (TPC; 6.56 mg GAE/g DW), total phenolic production (TPP; 101 mg/flask) as compared to control (5.44 mg GAE/g DW; 82.2 mg GAE/g DW), and exhibited a strong correlation with dry biomass. Blue light also improved the accumulation of total flavonoid content (TFC; 4.33 mg RE/g DW) and total flavonoid production (TFP; 65 mg/flask) as compared to control. The violet light showed the highest DPPH inhibition (79.72%), while the lowest antioxidant activity was observed for control roots (73.81%). Hence, we concluded that the application of spectral lights is an auspicious strategy for the enhancement of the required antioxidant secondary metabolites in adventitious root cultures of S. rebaudiana and of other medicinal plants.  相似文献   

5.
蔗糖和光对三裂叶野葛毛状根生长及次生物质产生的影响   总被引:6,自引:0,他引:6  
研究了蔗糖浓度和光对固体培养的三裂叶野葛毛状根生长及其总异黄酮和葛根素产生的影响。结果表明:在供试的分别添加1%、3%、5%、7%和9%蔗糖的MS固体培养基中,3%蔗糖能促进三裂叶野葛毛状根的生长及其异黄酮类化合物和葛根素的积累;培养20d后,其生物量达到0.48g(DW,干重)/瓶,总异黄酮和葛根素含量分别为25.44mg/g(DW)和11.64mg/g(DW)。与添加3%蔗糖的MS培养基培养的三裂叶野葛毛状根相比,含5%蔗糖的培养基培养的毛状根干重增殖倍数提高了7.0%,而含1%、7%和9%蔗糖的培养基培养的毛状根干重增殖倍数分别下降62.4%、42.8%和65.3%;其总异黄酮含量分别降低574%、13%和33.4%,葛根素含量分别下降47.9%、15.8%和35.1%,但其毛状根培养物的可溶性糖含量则分别增加了0.52、1.45和1.54倍。暗培养30d的毛状根的生物量达到0.83g(DW)/瓶,分别比蓝光和白光培养的毛状根提高37.1%和23.3%。在蓝光和白光下培养的部分毛状根的表面呈淡绿色;但白光处理的毛状根中总异黄酮含量比蓝光和暗培养处理的分别提高了14.7%和19.2%;蓝光抑制毛状根中葛根素含量的积累,白光和暗培养的毛状根培养物中的葛根素含量分别是蓝光处理的1.61倍和1.52倍。  相似文献   

6.
7.
Ajuga bracteosa is a medicinally important plant globally used in the folk medicine against many serious ailments. In the present study, effects of two significant elicitors, methyl jasmonate (Me-J) and phenyl acetic acid (PAA) were studied on growth parameters, secondary metabolites production, and antioxidant potential in adventitious root suspension cultures of A. bracteosa. The results showed a substantial increase in biomass accumulation, exhibiting longer log phases of cultures growth in response to elicitor treatments, in comparison to control. Maximum dry biomass formation (8.88 DW g/L) was recorded on 32nd day in log phase of culture when  0.6 mg/L Me-J was applied; however, PAA at 1.2 mg/L produced maximum biomass (8.24 DW g/L) on day 40 of culture.  Furthermore, we observed the elicitors-induced enhancement in phenolic content (total phenolic content), flavonoid content (total flavonoid content) and antioxidant activity (free radical scavenging activity) in root suspension cultures of A. bracteosa. Application of 0.6 mg/L and 1.2 mg/L of Me-J, root cultures accumulated higher TPC levels (3.6 mg GAE/g DW) and (3.7 mg GAE/g DW) in the log phase and stationary phase, respectively, while 2.5 mg/L Me-J produced lower levels (1.4 mg GAE/g DW) in stationary phase of growth stages. Moreover, TFC and FRSA values were found in correspondence to TPC values in the respective growth phases at the similar elicitor treatment. Thus, a feasible protocol for establishment of adventitious roots in A. bracteosa was developed and enhancement in biomass and metabolite content in adventitious root was promoted through elicitation.  相似文献   

8.
Astragalus membranaceus is one of the most widely used traditional medicinal herbs in China, but the time required to generate a useful product in the field production is long. The growth of adventitious root cultures was compared between cultures grown in solid, liquid, or a 5-L balloon-type bubble bioreactor. The maximum growth ratio (final dry weight/initial dry weight) was determined for adventitious roots grown in the bioreactor. Studies carried out to optimize biomass production of adventitious roots compared adventitious root growth from various inoculum root lengths, inoculum densities, and aeration volume in the bioreactors. The maximum growth ratio occurred in treatments with a 1.5-cm inoculum root length, with 30 g (fresh weight) of inoculum per bioreactor or with an aeration volume of 0.1 vvm (air volume/culture medium volume per min). The polysaccharide, saponin, and flavonoid content of roots from bioreactor-grown cultures were compared to roots from field-grown plants grown for 1 and 3 yr. Total polysaccharide content of adventitious roots in the bioreactor (30.0 mg g−1 dry weight (DW)) was higher than the roots of 1-yr-old (13.8 mg g−1 DW) and 3-yr-old (21.1 mg g−1 DW) plants in the field. Total saponin (3.4 mg g−1 DW) and flavonoid (6.4 mg g−1 DW) contents were nearly identical to 3-yr-old roots and higher than that of 1-yr-old roots under field cultivation.  相似文献   

9.
Biomass growth, ginsenoside and polysaccharide production in different ginseng tissue cultures, including callus culture, adventitious root culture and hairy root culture, were studied, and the active component contents were compared with that of native ginseng roots. The adventitious root culture was confirmed to be a very nice system, which grew fast and contained a rather high content of ginsenosides. Then, the culture conditions of adventitious root culture were optimized. The results showed that salt strength, various sucrose concentrations, ammonia/nitrate ratios and phosphate concentrations had significant influences on adventitious roots growth, secondary metabolite and polysaccharide synthesis in ginseng. The best culture conditions for ginsenoside production seemed to be 0.75 salt strength Murashige and Skoog medium, 4% sucrose, 9 mM ammonia to 36 mM nitrate, and 1.25 mM phosphate, while the optimization for polysaccharide accumulation seemed to be 0.75 salt strength, 6% sucrose, 9 mM ammonia to 36 mM nitrate and 3.75 mM phosphate source. Appropriate conditions allowed for a maximum ginsenoside yield of up to 132.90 mg/L and polysaccharide yield of 407.63 mg/L to be obtained after 4 weeks of culture.  相似文献   

10.
The present study relates to different polyunsaturated fatty acids (PUFAs) which were used as elicitors to enhance biomass accumulation and ginsenoside production in Panax ginseng. Adventitious root cultures of ginseng were elicited with oleic and linolenic acid at 0, 1, 5, 10 or 50 µmol/l concentrations respectively. Elicitors were added to the medium of adventitious roots on the 40th day of culture and roots were harvested on day 47. Cultures supplemented with oleic acid decreased root biomass and ginsenoside accumulation. Cultures supplemented with 1 µmol/l linolenic acid enhanced ginsenoside accumulation, without the decrease of adventitious root biomass. Linolenic acid enhanced the biosynthesis of both protopanxatriols (2.95 ± 0.048 mg/g DW) and protopanxadiols (5.66 ± 0.043 mg/g DW) compared to that of control at (1.41 ± 0.002 mg/g DW) and (1.58 ± 0.006 mg/g DW) respectively. No changes in polysaccharides and phenolics content have been noticed upon elicitation with PUFAs. This is the first report on linolenic acid as an elicitor for ginsenoside accumulation in ginseng adventitious root cultures.  相似文献   

11.
The study assessed the influence of sugar concentration (10, 20, 30, 50, 70, 100, 120 g l?1) on growth and ginsenoside biosynthesis in Panax quinquefolium hairy roots cultivated in shake flasks and a nutrient sprinkle bioreactor. The highest growth rate was achieved in medium containing 3–5 % sucrose. More than 70 g l?1 or less than 20 g l?1 sugar content in the medium induces significant inhibition of root growth when cultivated in shake flasks. The saponin content was determined using HPLC. The maximum yield (above 9 mg g?1 d.w.) of the sum of six examined ginsenosides (Rb1, Rb2, Rc, Rd, Re and Rg1) in hairy roots cultivated in shake flasks was obtained with 30 g l?1 sucrose in the medium. The sucrose concentration in the medium was found to correlate with saponin content in bioreactor-cultured specimens. A higher level of protopanaxadiol derivatives was found for lower (20 and 30 g l?1) sucrose concentrations; higher sucrose concentrations (50 and 70 g l?1) in the medium stimulated a higher level of Rg group saponins.  相似文献   

12.
Withanolides are biologically active secondary metabolites present in roots and leaves of Withania somnifera. In the present study, we have induced adventitious roots from leaf explants of W. somnifera for the production of withanolide-A, which is having pharmacological activities. Adventitious roots were induced directly from leaf segments of W. somnifera on half strength Murashige and Skoog (MS) semisolid medium (0.8% agar) with 0.5 mg l−1 indole-3-butyric acid (IBA) and 30 g l−1 sucrose. Adventitious roots cultured in flasks using half strength MS liquid medium with 0.5 mg l−1 IBA and 30 g l−1 showed higher accumulation of biomass (108.48 g l−1FW and 10.76 g l−1 DW) and withanolide-A content (8.8 ± 0.20 mg g−1 DW) within five weeks. Nearly 11-fold increment of fresh biomass was evident in suspension cultures and adventitious root biomass produced in suspension cultures possessed 21-fold higher withanolide-A content when compared with the leaves of natural plants. An inoculum size of 10 g l−1 FW favoured the biomass accumulation and withanolide-A production in the tested range of 2.5, 5.0, 10.0 and 20.0 g l−1 FW. Among different media tested [Murashige and Skoog (MS), Gamborg’s (B5), Nitsch and Nitsch (NN) and Chu’s (N6)], MS medium favoured both biomass accumulation and withanolide-A production. Half strength MS medium favoured the biomass accumulation and withanolide-A production among the different strength MS medium tested (0.25, 0.5, 0.75, 1.0, 1.5 and 2.0). The current results showed great potentiality of adventitious roots cultures for the production of withanolide-A.  相似文献   

13.
Pilot-scale culture of adventitious roots of ginseng in a bioreactor system   总被引:3,自引:0,他引:3  
A pilot-scale culture of multiple adventitious roots of ginseng was established using a balloon-type bubble bioreactor. Adventitious roots (2 cm) induced from callus were cultured in plastic Petri dishes having 20 ml of solid Schenk and Hildebrandt (1972) medium containing 3% sucrose, 0.15% gelrite, and 24.6 μM indole-3-butric acid. An average of 29 secondary multiple adventitious roots were produced after 4 weeks of culture. These secondary roots were elongated on the same medium, reaching a length of 5 cm after 6 weeks of culture. A time course study revealed that maximum yields in 5-l and 20-l bioreactors were approximately 500 g and 2.2 kg at day 42 with 60 g and 240 g inoculations, respectively. Cutting twice during the culture increased the total amount of biomass produced. The root biomass in a 20-l balloon-type bubble bioreactor was 2.8 kg at harvest with 240 g of inoculum after 8 weeks of culture. The total saponin content obtained from small-scale and pilot-scale balloon type bubble bioreactors was around 1% based on dry weight. Inoculation of 500 g fresh weight of multiple adventitious roots into a 500 l balloon-type bubble bioreactor with cutting at 4 and 6 weeks after inoculation produced approximately 74.8 kg of multiple roots. The ginsengnoside profiles of these multiple adventitious roots were similar to profiles of field-grown ginseng roots when analyzed by HPLC. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
In this study, the dynamics of biomass production, accumulation of periplocin, medium conditions and consumption of carbon, nitrogen and phosphate were investigated in adventitious roots culture of Periploca sepium in shake flasks over a period of 4 weeks. The biomass reached the maximum peak on day 24 (2.46 and 0.213 g of fresh and dry weight, respectively). Similarly, periplocin production got to a peak of 0.083 mg g?1 on day 24, simultaneously. PH in medium had a decrease tendency at the beginning and then remained stable around 4.0, however, EC declined during the whole culture with the nutrients consumed. Sucrose was almost used up on the first 12 days which led to the increase in glucose and fructose. In case of nitrogen, consumption of ammonium is faster than nitrate at the beginning. Phosphate was almost consumed during the first 8 days. Based on the nutrients consumption, the adding time of nutrients (1/2 MS medium and 30 g L?1 sucrose) was investigated and it obtained highest content of periplocin (0.106 mg g?1) and yield (0.513 mg L?1) on day 12.  相似文献   

15.
High frequency multiple shoots have been induced from nodal segments of Rhinacanthus nasutus (L.) Kurz., a potent anticancerous ethnomedicinal plant. For initiation of cultures, nodal segments were cultured on MS medium supplemented with various concentrations (1.0–5.0 μM) of 6-benzyladenine or thidiazuron (TDZ) alone or in combination with α-naphthalene acetic acid (NAA 0.5–1.0 μM). The optimum frequency of response (85 %) and shoot number (3.3) was observed on MS medium supplemented with 4.0 μM TDZ and 0.8 μM NAA. The shoots developed on initiation media were excised and nodal segments were subcultured on MS medium supplemented with TDZ (4.0 μM) and NAA (0.5–1.0 μM). This subculturing process was repeated thrice, each with 45 days of duration and the multiple shoot formation was recorded at the end of every subculture stage. The highest frequency of response (100 %) and number of multiple shoots (24.1) per explant were recorded at the end of the third subculture passage on MS medium supplemented with 4.0 μM TDZ and 0.8 μM NAA. The optimum rooting of shoots was observed on ½ MS medium fortified with 3.0 μM indole-3-butyric acid. The rooted plants were successfully transplanted to soil. The estimation of rhinacanthin (RC) content in shoots and roots was carried out in 6-month-old ex vitro plants (i.e., plants regenerated via in vitro culture) and field grown natural plants by high performance liquid chromatography. Both shoots and roots of naturally grown plants showed slightly higher RC content than ex vitro grown plants. The highest RC content (4.6 mg/g DW RC-C, 0.14 mg/g DW RC-D and 0.10 mg/g DW RC-N) was recorded in roots of naturally grown plants.  相似文献   

16.
To improve root growth and production of bioactive compounds such as anthraquinones (AQ), phenolics, and flavonoids by adventitious root cultures of Morinda citrifolia, the effects of aeration rate, inoculum density, and Murashige and Skoog (MS) medium salt strengths were investigated using a balloon-type bubble bioreactor. The possible mechanisms underlying changes in activities of enzymic (superoxide dismutase, catalase, guaiacol peroxidase, ascorbate peroxidase) and nonenzymic (vitamin E) antioxidants, phenylalanine ammonia lyase, and stress levels (accumulation of hydrogen peroxide and proline, peroxidation of lipids) were also studied. Low aeration rate (0.05 vvm [air volume/culture volume/min]) accelerated accumulation of root fresh weight and dry weight (DW). High aeration rates (0.1 to 0.3 vvm) stimulated accumulation of AQ, phenolics, and flavonoids and reduced root growth. Low inoculum densities (5 and 10 g l–1) increased accumulation of those metabolites but inhibited root growth. Culture of adventitious roots with high concentrations of MS salts (1× and 1.5× MS) resulted in induction of oxidative stress that strongly inhibited root growth. Overall, an aeration rate of 0.05 vvm, 15 g l–1 inoculum density, and half-strength (0.5×) MS medium were optimal for enhancing accumulation of root dry biomass (4.38 g l–1), AQ (103.08 mg g–1 DW), phenolics (54.81 mg g–1 DW), and flavonoids (49.27 mg g–1 DW).  相似文献   

17.
The water-soluble polysaccharides of brown algae attract the increasing attention of researchers as an important class of polymeric materials of biotechnological interest. The sole source for production of these polysaccharides has been large brown seaweeds such as members of Laminariales and Fucales. A new source of water-soluble polysaccharides is suggested here: it is a filamentous brown alga Streblonema sp., which can be cultivated under controlled conditions in photobioreactors that allow obtaining algal biomass with reproducible content and quality of polysaccharides. The accumulation of water-soluble polysaccharides can be stimulated by macronutrient limitation. In response to nitrogen deficiency, Streblonema sp. accumulated water-soluble polysaccharides (WSPs) rich in laminaran. WSP accumulation started after 3–4 days following nitrate depletion and reached a plateau at around day 7. Polysaccharide accumulation was related to cellular nitrogen content. The critical internal N level that triggered the onset of polysaccharide accumulation was 2.3% dry weight (DW); at a cellular N concentration less than 1.4% DW, the polysaccharide synthesis stopped. Upon nitrate re-supply, mobilization of WSP occurred after 3 days. These results suggest that a two-stage cultivation process could be used to obtain large algal biomass with high water-soluble polysaccharide production: a first cultivation stage using nitrate-supplemented medium to accumulate algal biomass followed by a second cultivation stage in a nitrate-free medium for 3 to 7 days to enhance polysaccharide content in the alga.  相似文献   

18.
In this study, we investigated the influence of initial sucrose concentration on the accumulation of biomass, phenols, flavonoids, chlorogenic acid, and hypericin in adventitious root cultures of Hypericum perforatum L. Cultures were initiated in shake flasks by using half-strength Murashige and Skoog (MS) medium, 1.0 mg l−1 indolebutyric acid (IBA), 0.1 m g l−1 kinetin, and different concentrations 0, 1, 3, 5, 7, or 9% in w/v) of sucrose and were maintained in darkness. The medium supplemented with 3% (w/v) sucrose resulted in the optimum biomass accumulation, but higher sucrose concentrations (5, 7, and 9%) inhibited biomass accumulation due to the relatively higher osmotic pressure. However, the amount of total phenols, flavonoids, chlorogenic acid, and total hypericin was increased with the roots grown in the medium supplemented with 5, 7, and 9% (w/v) sucrose. The antioxidant potential of methanolic extract [1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid; ABTS) radical scavenging activities] of H. perforatum adventitious roots was also assessed and correlated with the metabolite accumulation. Cultures maintained with higher initial sucrose concentration (5, 7, and 9% w/v) showed increased accumulation of phenols, flavonoids, chlorogenic acid, and total hypericin, and this might be due to the osmotic stress at elevated sucrose concentrations. To verify the effect of osmotic stress on lipid peroxidation, the levels of hydrogen peroxide (H2O2), malondialdehyde (MDA), and proline were determined in the adventitious roots and the results revealed a marked increase in the concentrations of these compounds. These results suggest that optimal adventitious root biomass could be achieved in the MS medium with 3% (w/v) sucrose and increased sucrose concentration resulted in osmotic stress and, in turn, induces the accumulation of secondary metabolites.  相似文献   

19.
Organic nutrients play a central role during Panax ginseng adventitious root culture in bioreactor systems. To understand how the nutrient elements were uptaken during the adventitious root growth as well as the production of biomass and natural ginsenosides, a biotechnological approach to identifying the nutritional physiology of ginseng in a commercial‐scale bioreactor was necessary. Normal MS medium nutrient in the bioreactor culture of adventitious roots resulted in slow growth, low biomass, and Rg and Rb ginsenoside contents. When the ginsenoside production increased to higher levels, a group of regulatory nutritional elements that have the potential to interact with biomass was identified. The effects of the salt strength of the medium, of macroelements, metal elements, the ammonia/nitrate ratio, sucrose concentration, and osmotic agents on the growth, the formation of biomass and the production of ginsenosides from adventitious roots were investigated. Appropriate conditions allowed for a maximum ginsenoide production of up to 12.42 [mg/g DW] to be obtained after 5 weeks of culture. The results demonstrated that the key organic nutrients can be regulated to improve the biomass and growth, and increase the ginsenoside yield in bioreactor cultures of P. ginseng adventitious roots.  相似文献   

20.
We have established cell-suspension cultures of mountain ginseng (Panax ginseng G A. Mayer), and have attempted to increase the yield of saponin by manipulating our processing method and culturing factors (e.g., media strengths; the presence of plant growth regulators or sucrose; ratios of NO+ 3/ NH- 4). Maximum biomass yield was obtained in media containing 2,4-D. However, saponin productivity was much higher in a medium comprising either IBA or NAA; 7.0 mg/L IBA was optimal for promoting both cell growth (10.0 g/L dry weight) and saponin production (7.29 mg/g DW total ginsenoside). Although the addition of cytokinins (BA and kinetin) did not affect cell growth, the level of saponin (particularly in the Rb group) was enhanced when the media were supplemented with either 0.5 mg/L BA or 0.5 mg/L kinetin. Half- and full-strength MS media were equally suitable for inducing both biomass as well as saponin production. We also investigated the effect of various concentrations of sucrose and nitrogen, and found that 30 g/L sucrose enhanced biomass yield as well as saponin content However, further increases (i.e., up to 70 g/L) led to a decrease in saponin accumulation and biomass production. Maximum growth and saponin productivity were reported from treatments with an initial nitrogen concentration of 30 mM. In general, the amount of saponin increased when the test media had high NO+ 3/ NH- 4 ratios; in fact, saponin production was greatest when nitrate was the sole nitrogen source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号