首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eph kinases and their ephrin ligands are widely expressed in epithelial cells in vitro and in vivo. Our results show that activation of endogenous EphA kinases in Madin-Darby canine kidney (MDCK) cells negatively regulates hepatocyte growth factor/scatter factor (HGF)-induced branching morphogenesis in collagen gel. Cotreatment with HGF and ephrin-A1 reduced sprouting of cell protrusions, an early step in branching morphogenesis. Moreover, addition of ephrin-A1 after HGF stimulation resulted in collapse and retraction of preexisting cell protrusions. In a newly developed assay that simulates the localized interactions between Ephs and ephrins in vivo, immobilized ephrin-A1 suppressed HGF-induced MDCK cell scattering. Ephrin-A1 inhibited basal ERK1/2 mitogen-activated protein kinase activity; however, the ephrin-A1 effect on cell protrusion was independent of the mitogen-activated protein kinase pathway. Ephrin-A1 suppressed HGF-induced activation of Rac1 and p21-activated kinase, whereas RhoA activation was retained, leading to the preservation of stress fibers. Moreover, dominant-negative RhoA or inhibitor of Rho-associated kinase (Y27632) substantially negated the inhibitory effects of ephrin-A1. These data suggest that interfering with c-Met signaling to Rho GTPases represents a major mechanism by which EphA kinase activation inhibits HGF-induced MDCK branching morphogenesis.  相似文献   

2.
EphA2、E-钙黏素在肿瘤中的研究   总被引:1,自引:0,他引:1  
Eph受体激酶是受体酪氨酸激酶(RTKs)家族中最大的一个亚族.EphA2是Eph受体中的一员,可以调节细胞生长、迁移和血管生成.EphA2受体广泛过表达于上皮来源的肿瘤细胞,导致正常细胞恶性转化,增强肿瘤细胞的侵袭性、浸润性和转移性.E-cadherin是一种常见的上皮黏附分子,可以介导细胞之间的黏附,细胞向正常及肿瘤组织的移动并定位,同时可以影响其它蛋白的定位和转化,进一步促进肿瘤的恶型性.研究证明:许多上皮性肿瘤中,包括食管癌、宫颈癌、乳腺癌、结肠癌等都发现EphA2和E-cadherin均有异常表达,且与肿瘤的恶性程度和疾病的预后有密切的关系.本文从EphA2、E-cadherin的结构、功能、相互关系以及在肿瘤中的研究加以综述.  相似文献   

3.
Ephrins are cell surface-associated ligands for Eph receptor tyrosine kinases and are implicated in repulsive axon guidance and cell migration. EphA2, 3, and 4 receptors and one of their cognate ligands, ephrin-A2, are expressed by cells in the subventricular zone and ganglionic eminence of the embryonic day 14.5 telencephalon and by neural precursor cells in vitro. Activation of EphA receptors in dissociated neural precursor cells in vitro facilitates the commitment to neuronal fates. The majority of ephrin-A1-induced neurons is immunoreactive for tyrosine hydroxylase. Blocking the signal by the extracellular domain of EphA in forebrain slices results in a decrease in neurogenesis. Extracellular signal-regulated kinase is activated by the ligand binding to EphA receptors and is involved in the neurogenesis through EphA receptors. Rap1, but not Ras, is activated in response to ephrin-A1. Our results identify EphA receptors as positive regulators of the mitogen-activated protein kinase pathway that exerts neurogenesis of neural precursor cells from the developing central nervous system.  相似文献   

4.
Intercellular signaling via the Eph receptor tyrosine kinases and their ligands, the ephrins, acts to shape many regions of the developing brain. One intriguing consequence of Eph signaling is the control of mixing between discrete cell populations in the developing hindbrain, contributing to the formation of segregated rhombomeres. Since the thalamus is also a parcellated structure comprised of discrete nuclei, might Eph signaling play a parallel role in cell segregation in this brain structure? Analyses of expression reveal that several Eph family members are expressed in the forming thalamus and that cells expressing particular receptors form cellular groupings as development proceeds. Specifically, expression of receptors EphA4 or EphA7 and ligand ephrin-A5 is localized to distinct thalamic domains. EphA4 and EphA7 are often coexpressed in regions of the forming thalamus, with each receptor marking discrete thalamic domains. In contrast, ephrin-A5 is expressed by a limited group of thalamic cells. Within the ventral thalamus, EphA4 is present broadly, occasionally overlapping with ephrin-A5 expression. EphA7 is more restricted in its expression and is largely nonoverlapping with ephrin-A5. In mutant mice lacking one or both receptors or ephrin-A5, the appearance of the venteroposterolateral (VPL) and venteroposteromedial (VPM) nuclear complex is altered compared to wild type mice. These in vivo results support a role for Eph family members in the definition of the thalamic nuclei. In parallel, in vitro analysis reveals a hierarchy of mixing among cells expressing ephrin-A5 with cells expressing EphA4 alone, EphA4 and EphA7 together, or EphA7 alone. Together, these data support a model in which EphA molecules promote the parcellation of discrete thalamic nuclei by limiting the extent of cell mixing.  相似文献   

5.
Intercellular signaling via the Eph receptor tyrosine kinases and their ligands, the ephrins, acts to shape many regions of the developing brain. One intriguing consequence of Eph signaling is the control of mixing between discrete cell populations in the developing hindbrain, contributing to the formation of segregated rhombomeres. Since the thalamus is also a parcellated structure comprised of discrete nuclei, might Eph signaling play a parallel role in cell segregation in this brain structure? Analyses of expression reveal that several Eph family members are expressed in the forming thalamus and that cells expressing particular receptors form cellular groupings as development proceeds. Specifically, expression of receptors EphA4 or EphA7 and ligand ephrin-A5 is localized to distinct thalamic domains. EphA4 and EphA7 are often coexpressed in regions of the forming thalamus, with each receptor marking discrete thalamic domains. In contrast, ephrin-A5 is expressed by a limited group of thalamic cells. Within the ventral thalamus, EphA4 is present broadly, occasionally overlapping with ephrin-A5 expression. EphA7 is more restricted in its expression and is largely nonoverlapping with ephrin-A5. In mutant mice lacking one or both receptors or ephrin-A5, the appearance of the venteroposterolateral (VPL) and venteroposteromedial (VPM) nuclear complex is altered compared to wild type mice. These in vivo results support a role for Eph family members in the definition of the thalamic nuclei. In parallel, in vitro analysis reveals a hierarchy of mixing among cells expressing ephrin-A5 with cells expressing EphA4 alone, EphA4 and EphA7 together, or EphA7 alone. Together, these data support a model in which EphA molecules promote the parcellation of discrete thalamic nuclei by limiting the extent of cell mixing.  相似文献   

6.
Eph receptor tyrosine kinases and their membrane-bound ligands, ephrins, have key roles in patterning and morphogenesis. Interactions between these molecules are promiscuous, but largely fall into two groups: EphA receptors bind to glycosylphosphatidyl inositol-anchored ephrin-A ligands, and EphB receptors bind to transmembrane ephrin-B proteins. Ephrin-B proteins transduce signals, such that bidirectional signalling can occur upon interaction with the Eph receptor. In many tissues, there are complementary and overlapping expression domains of interacting Eph receptors and ephrins. An important role of Eph receptors and ephrins is to mediate cell contact-dependent repulsion, and this has been implicated in the pathfinding of axons and neural crest cells, and the restriction of cell intermingling between hindbrain segments. Studies in an in vitro system show that bidirectional activation is required to prevent intermingling between cell populations, whereas unidirectional activation can restrict cell communication via gap junctions. Recent work indicates that Eph receptors can also upregulate cell adhesion, but the biochemical basis of repulsion versus adhesion responses is unclear. Eph receptors and ephrins have thus emerged as key regulators that, in parallel with cell adhesion molecules, underlie the establishment and maintenance of patterns of cellular organization.  相似文献   

7.
Interactions between receptor tyrosine kinases of the Eph family and their ligands, ephrins, are implicated in establishment of organ boundaries and repulsive guidance of cell migration during development, but the mechanisms by which this is achieved are unclear. Here we show that activation of endogenous EphA2 kinase induces an inactive conformation of integrins and inhibits cell spreading, migration and integrin-mediated adhesion. Moreover, EphA2 is constitutively associated with focal-adhesion kinase (FAK) in resting cells. Within one minute after stimulation of EphA2 with its ligand, ephrin-A1, the protein tyrosine phosphatase SHP2 is recruited to EphA2; this is followed by dephosphorylation of FAK and paxillin, and dissociation of the FAK-EphA2 complex. We conclude that Eph kinases mediate some of their functions by negatively regulating integrins and FAK.  相似文献   

8.
The EphA receptor tyrosine kinases interact with membrane-bound ligands of the ephrin-A subfamily. Interaction induces EphA receptor oligomerization, tyrosine phosphorylation, and, as a result, EphA receptor signaling. EphA receptors have been shown to regulate cell survival, migration, and cell-cell and cell-matrix interactions. However, their functions in lymphoid cells are only beginning to be described. We show in this study that functional EphA receptors are expressed by murine thymocytes, including CD4(+)CD8(+), CD4(+)CD8(-), and CD4(-)CD8(+) subpopulations. We demonstrate that activation of EphA receptors by the ephrin-A1 ligand inhibits the anti-CD3-induced apoptosis of CD4(+)CD8(+) double-positive thymocytes. Furthermore, ephrin-A1 costimulation suppresses up-regulation of both the IL-2R alpha-chain (CD25) and early activation Ag CD69 and can block IL-2 production by CD4(+) single-positive cells. In agreement, EphA receptor activation in thymocytes also inhibits TCR-induced activation of the Ras-MAPK pathway. Our findings suggest that EphA receptor activation is antithetical to TCR signaling in thymocytes, and that the level of engagement by ephrin-A proteins on thymic APCs regulates thymocyte selection.  相似文献   

9.
The erythropoietin-producing hepatocellular (Eph) family of receptor tyrosine kinases regulates a multitude of physiological and pathological processes. Despite the numerous possible research and therapeutic applications of agents capable of modulating Eph receptor function, no small molecule inhibitors targeting the extracellular domain of these receptors have been identified. We have performed a high throughput screen to search for small molecules that inhibit ligand binding to the extracellular domain of the EphA4 receptor. This yielded a 2,5-dimethylpyrrolyl benzoic acid derivative able to inhibit the interaction of EphA4 with a peptide ligand as well as the natural ephrin ligands. Evaluation of a series of analogs identified an isomer with similar inhibitory properties and other less potent compounds. The two isomeric compounds act as competitive inhibitors, suggesting that they target the high affinity ligand-binding pocket of EphA4 and inhibit ephrin-A5 binding to EphA4 with K(i) values of 7 and 9 mum in enzyme-linked immunosorbent assays. Interestingly, despite the ability of each ephrin ligand to promiscuously bind many Eph receptors, the two compounds selectively target EphA4 and the closely related EphA2 receptor. The compounds also inhibit ephrin-induced phosphorylation of EphA4 and EphA2 in cells, without affecting cell viability or the phosphorylation of other receptor tyrosine kinases. Furthermore, the compounds inhibit EphA4-mediated growth cone collapse in retinal explants and EphA2-dependent retraction of the cell periphery in prostate cancer cells. These data demonstrate that the Eph receptor-ephrin interface can be targeted by inhibitory small molecules and suggest that the two compounds identified will be useful to discriminate the activities of EphA4 and EphA2 from those of other co-expressed Eph receptors that are activated by the same ephrin ligands. Furthermore, the newly identified inhibitors represent possible leads for the development of therapies to treat pathologies in which EphA4 and EphA2 are involved, including nerve injuries and cancer.  相似文献   

10.
Eph receptor tyrosine kinases and their ligands, the ephrins, perform an important regulatory function in tissue organization, as well as participate in malignant transformation of cells. Ephrin-A1, a ligand of A class Eph receptors, is a modulator of tumor growth and progression, and the mechanism of its action needs detailed investigation. Here we report on the development of a system for bacterial expression of an ephrin-A1 receptor-binding domain (eA1), a procedure for its purification, and its renaturation with final yield of 50 mg/liter of culture. Functional activity of eA1 was confirmed by immunoblotting, laser scanning confocal microscopy, and flow cytometry. It is shown that monomeric non-glycosylated receptor-binding domain of ephrin-A1 is able to activate cellular EphA2 receptors, stimulating their phosphorylation. Ligand eA1 can be used to study the features of ephrin-A1 interactions with different A class Eph receptors. The created expression cassette is suitable for the development of ligands with increased activity and selectivity and experimental systems for the delivery of cytotoxins into tumor cells that overexpress EphA2 or other class A Eph receptors.  相似文献   

11.
Shin J  Gu C  Kim J  Park S 《BMB reports》2008,41(6):479-484
In the present study, we demonstrate that ephrin-A5 is able to induce a transient increase of MAP kinase activity in PC12 cells. However, the effects of ephrin-A5 on the MAP kinase signaling pathway are about three-fold less than that of EGF. In addition, we demonstrate that EphA4 is the only Eph member expressed in PC12 cells, and that tyrosine phosphorylation induced by ephrin-A5 treatment is consistent with the magnitude and longevity of MAP kinase activation. Experiments using the Ras dominant negative mutant N17Ras reveal that Ras plays a pivotal role in ephrin-A5-induced MAP kinase activation in PC12 cells. Importantly, we found that the EphA4 receptor is rapidly internalized by endocytosis upon engagement of ephrin-A5, leading to a subsequent reduction in the MAP kinase activation. Together, these data suggest a novel regulatory mechanism of differential Ras-MAP kinase signaling kinetics exhibited by the forward signaling of EphA4 in PC12 cells.  相似文献   

12.
Receptor tyrosine kinases of the Eph family play multiple roles in the physiological regulation of tissue homeostasis and in the pathogenesis of various diseases, including cancer. The EphA2 receptor is highly expressed in most cancer cell types, where it has disparate activities that are not well understood. It has been reported that interplay of EphA2 with oncogenic signaling pathways promotes cancer cell malignancy independently of ephrin ligand binding and receptor kinase activity. In contrast, stimulation of EphA2 signaling with ephrin-A ligands can suppress malignancy by inhibiting the Ras-MAP kinase pathway, integrin-mediated adhesion, and epithelial to mesenchymal transition. Here we show that ephrin-A1 ligand-dependent activation of EphA2 decreases the growth of PC3 prostate cancer cells and profoundly inhibits the Akt-mTORC1 pathway, which is hyperactivated due to loss of the PTEN tumor suppressor. Our results do not implicate changes in the activity of Akt upstream regulators (such as Ras family GTPases, PI3 kinase, integrins, or the Ship2 lipid phosphatase) in the observed loss of Akt T308 and S473 phosphorylation downstream of EphA2. Indeed, EphA2 can inhibit Akt phosphorylation induced by oncogenic mutations of not only PTEN but also PI3 kinase. Furthermore, it can decrease the hyperphosphorylation induced by constitutive membrane-targeting of Akt. Our data suggest a novel signaling mechanism whereby EphA2 inactivates the Akt-mTORC1 oncogenic pathway through Akt dephosphorylation mediated by a serine/threonine phosphatase. Ephrin-A1-induced Akt dephosphorylation was observed not only in PC3 prostate cancer cells but also in other cancer cell types. Thus, activation of EphA2 signaling represents a possible new avenue for anti-cancer therapies that exploit the remarkable ability of this receptor to counteract multiple oncogenic signaling pathways.  相似文献   

13.
Evidence is accumulating that Eph receptor tyrosine kinases and their ligands regulate cell migration and axonal guidance during development. It was previously found that one of the Eph receptors, EphA4, is transiently expressed in subsets of chick embryonic motor neurons. Here, the expression of EphA and ephrin-A subfamily members was further examined, and the dynamic patterns of expression in chick embryonic motor neurons found. EphA3, EphA4, ephrin-A2, and ephrin-A5 were also expressed in the connective tissues of limb muscles and EphA3 and EphA4 expressing motor neurons innervated EphA3 and EphA4 expressing limb muscles, respectively. These spatiotemporal expression patterns suggest that EphA and ephrin-A proteins play important roles in muscle patterning and motor axonal guidance.  相似文献   

14.
Eph receptors and their membrane‐bound ligands, the ephrins, represent a complex subfamily of receptor tyrosine kinases (RTKs). Eph/ephrin binding can lead to various and opposite cellular behaviors such as adhesion versus repulsion, or cell migration versus cell‐adhesion. Recently, Eph endocytosis has been identified as one of the critical steps responsible for such diversity. Eph receptors, as many RTKs, are rapidly endocytosed following ligand‐mediated activation and traffic through endocytic compartments prior to degradation. However, it is becoming obvious that endocytosis controls signaling in many different manners. Here we showed that activated EphA2 are degraded in the lysosomes and that about 35% of internalized receptors are recycled back to the plasma membrane. Our study is also the first to demonstrate that EphA2 retains the capacity to signal in endosomes. In particular, activated EphA2 interacted with the Rho family GEF Tiam1 in endosomes. This association led to Tiam1 activation, which in turn increased Rac1 activity and facilitated Eph/ephrin endocytosis. Disrupting Tiam1 function with RNA interference impaired both ephrinA1‐dependent Rac1 activation and ephrinA1‐induced EphA2 endocytosis. In summary, our findings shed new light on the regulation of EphA2 endocytosis, intracellular trafficking and signal termination and establish Tiam1 as an important modulator of EphA2 signaling .  相似文献   

15.
Angiogenesis is a multistep process involving a diverse array of molecular signals. Ligands for receptor tyrosine kinases (RTKs) have emerged as critical mediators of angiogenesis. Three families of ligands, vascular endothelial cell growth factors (VEGFs), angiopoietins, and ephrins, act via RTKs expressed in endothelial cells. Recent evidence indicates that VEGF cooperates with angiopoietins to regulate vascular remodeling and angiogenesis in both embryogenesis and tumor neovascularization. However, the relationship between VEGF and ephrins remains unclear. Here we show that interaction between EphA RTKs and ephrinA ligands is necessary for induction of maximal neovascularization by VEGF. EphA2 RTK is activated by VEGF through induction of ephrinA1 ligand. A soluble EphA2-Fc receptor inhibits VEGF-, but not basic fibroblast growth factor-induced endothelial cell survival, migration, sprouting, and corneal angiogenesis. As an independent, but complementary approach, EphA2 antisense oligonucleotides inhibited endothelial expression of EphA2 receptor and suppressed ephrinA1- and VEGF-induced cell migration. Taken together, these data indicate an essential role for EphA receptor activation in VEGF-dependent angiogenesis and suggest a potential new target for therapeutic intervention in pathogenic angiogenesis.  相似文献   

16.
Endocytosis of Eph receptors is critical for a number of biological processes, including modulating axon growth cone collapse response and regulating cell surface levels of receptor in epithelial cells. In particular, ephrin-A ligand stimulation of tumor cells induces EphA2 receptor internalization and degradation, a process that has been explored as a means to reduce tumor malignancy. However, the mechanism and regulation of ligand-induced Eph receptor internalization are not well understood. Here we show that SHIP2 (Src homology 2 domain-containing phosphoinositide 5-phosphatase 2) is recruited to activated EphA2 via a heterotypic sterile alpha motif (SAM)-SAM domain interaction, leading to regulation of EphA2 internalization. Overexpression of SHIP2 inhibits EphA2 receptor endocytosis, whereas suppression of SHIP2 expression by small interfering RNA-mediated gene silencing promotes ligand-induced EphA2 internalization and degradation. SHIP2 regulates EphA2 endocytosis via phosphatidylinositol 3-kinase-dependent Rac1 activation. Phosphatidylinositol 3,4,5-trisphosphate levels are significantly elevated in SHIP2 knockdown cells, phosphatidylinositol 3-kinase inhibitor decreases phosphatidylinositol 3,4,5-trisphosphate levels and suppresses increased EphA2 endocytosis. Ephrin-A1 stimulation activates Rac1 GTPase, and the Rac1-GTP levels are further increased in SHIP2 knockdown cells. A dominant negative Rac1 GTPase effectively inhibited ephrin-A1-induced EphA2 endocytosis. Together, our findings provide evidence that recruitment of SHIP2 to EphA2 attenuates a positive signal to receptor endocytosis mediated by phosphatidylinositol 3-kinase and Rac1 GTPase.  相似文献   

17.
The Eph (erythropoietin-producing human hepatocellular) receptor family, the largest subclass of receptor tyrosine kinases (RTKs), plays essential roles in embryonic development and neurogenesis. The intracellular Sterile Alpha Motif (SAM) domain presents a critical structural feature that distinguishes Eph receptors from other RTKs and participates in recruiting and binding downstream molecules. This study identified SASH1 (SAM and SH3 domain containing 1) as a novel Eph receptor-binding partner through SAM-SAM domain interactions. Our comprehensive biochemical analyses revealed that SASH1 selectively interacts with Eph receptors via its SAM1 domain, displaying the highest affinity for EphA8. The high-resolution crystal structure of the EphA8-SASH1 complex provided insights into the specific intermolecular interactions between these proteins. Cellular assays confirmed that EphA8 and SASH1 co-localize and co-precipitate in mammalian cells, with cancer mutations (EphA8 R942H or G978D) impairing this interaction. We demonstrated that SAM-SAM interaction is critical for SASH1-mediated regulation of EphA8 kinase activity, shedding new light on the Eph signaling pathway and expanding our understanding of the molecular basis of the tumor suppressor gene SASH1.  相似文献   

18.
19.
Lowes VL  Ip NY  Wong YH 《Neuro-Signals》2002,11(1):5-19
Activation of G protein-coupled receptors (GPCRs) leads to stimulation of classical G protein signaling pathways. In addition, GPCRs can activate the mitogen-activated protein kinases (MAPKs) such as the extracellular signal-regulated kinases, c-Jun NH(2)-terminal kinases (JNKs), and p38 MAPKs, and thereby influence cell proliferation, cell differentiation and mitogenesis. Cross talk between GPCRs and receptor tyrosine kinases (RTKs) is an incredibly complex process, and the exact signaling molecules involved are largely dependent on the cell type and the type of receptor that is activated. In this review we investigate recent advances that have been made in understanding the mechanisms of cross talk between GPCRs and RTKs, with a focus on GPCR-mediated activation of the Ras/MAPK pathway, GPCR-induced transactivation of RTKs, GPCR-mediated activation of JNK, and p38 MAPK, integration of signals by RhoGTPases, and activation of G protein signaling pathways by RTKs.  相似文献   

20.
《Biophysical journal》2022,121(10):1897-1908
Cells sense a variety of extracellular growth factors and signaling molecules through numerous distinct receptor tyrosine kinases (RTKs) on the cell surface. In many cases, the same intracellular signaling molecules interact with more than one type of RTK. How signals from different RTKs retain the identity of the triggering receptor and how (or if) different receptors may synergize or compete remain largely unknown. Here we utilize an experimental strategy, combining microscale patterning and single-molecule imaging, to measure the competition between ephrin-A1:EphA2 and epidermal growth factor (EGF):EGF receptor (EGFR) ligand-receptor complexes for the shared downstream signaling molecules, Grb2 and SOS. The results reveal a distinct hierarchy, in which newly formed EGF:EGFR complexes outcompete ephrin-A1:EphA2 for Grb2 and SOS, revealing a type of negative crosstalk interaction fundamentally controlled by chemical mass action and protein copy number limitations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号