首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Boesenbergia rotunda is a perennial ginger species rich in flavonoids, flavones, and cyclohexenyl chalcone derivatives. Several of these secondary metabolites have shown promising antiviral and anticancer activities, and thus, it is important to optimize methods for robust production of clonal materials. In this study, cell suspensions were established and their growth capacities were evaluated in liquid media supplemented with varying growth regulator compositions. The highest settled cell volume of 6.1?±?0.3 ml with a specific growth rate of 0.0892?±?0.0035 was achieved by maintaining cells in Murashige and Skoog liquid media supplemented with 1.0 mg L?1 of 2,4-dichlorophenoxyacetic acid and 0.5 mg L?1 6-benzyladenine, representing a 12-fold increase in cell volume during the culture period. A somatic embryogenesis rate of 1,433.33?±?387.84 somatic embryos per milliliter of settled cells was achieved with an inoculation cell density of 50 μl settled cell volume and on growth regulator-free agar plates. Around half (53.5?±?7.9%) of the somatic embryos germinated into complete plantlets on media supplemented with 3 mg L?1 6-benzyladenine and 1 mg L?1 α-naphthaleneacetic acid. The plantlets were successfully transferred to soil and grown in the greenhouse. Phytochemical profiling via high-performance liquid chromatography analysis revealed that regenerated plantlets retained the capacity to produce and accumulate bioactive compounds. Hence, this protocol will be helpful for metabolic engineering and functional studies of genes and enzymes involved in the biosynthetic pathway of valuable compounds in B. rotunda.  相似文献   

2.
Natural products are gaining tremendous importance in pharmaceutical industry and attention has been focused on the applications of in vitro technologies to enhance yield and productivity of such products. In this study, we investigated the accumulation of biomass and antioxidant secondary metabolites in response to different carbohydrate sources (sucrose, maltose, fructose and glucose) and sucrose concentrations (1, 3, 5, 7 and 9 %). Moreover, the effects of 3 % repeated sucrose feeding (day-12, -18 and -24) were also investigated. The results showed the superiority of disaccharides over monosaccharides for maximum biomass and secondary metabolites accumulation. Comparable profiles for maximum biomass were observed in response to sucrose and maltose and initial sucrose concentrations of 3 and 5 %. Maximum total phenolic and total flavonoid contents were displayed by cultures treated with sucrose and maltose; however, initial sucrose concentrations of 5 and 7 % were optimum for both classes of metabolites, respectively. Following 3 % extra sucrose feeding, cultures fed on day-24 (late-log phase) showed higher biomass, total phenolic and total flavonoid contents as compared to control cultures. Highest antioxidant activity was exhibited by maltose-treated cultures. Moreover, sucrose-treated cultures displayed positive correlation of antioxidant activity with total phenolics and total flavonoids production. This work describes the stimulatory role of disaccharides and sucrose feeding strategy for higher accumulation of phenolics and flavonoids, which could be potentially scaled up to bioreactor level for the bulk production of these metabolites in suspension cultures of A. absinthium.  相似文献   

3.
The effects of rare earth elements (REEs) not only on cell growth and flavonoid accumulation of Tetrastigma hemsleyanum suspension cells but also on the isoenzyme patterns and activities of related enzymes were studied in this paper. There were no significant differences in enhancement of flavonoid accumulation in T. hemsleyanum suspension cells among La3+, Ce3+, and Nd3+. Whereas their inductive effects on cell proliferation varied greatly. The most significant effects were achieved with 100 μM Ce3+and Nd3+. Under treatment over a 25-day culture period, the maximal biomass levels reached 1.92- and 1.74-fold and the total flavonoid contents are 1.45- and 1.49-fold, than that of control, respectively. Catalase, phenylalanine ammonia-lyase (PAL), and peroxidase (POD) activity was activated significantly when the REE concentration range from 0 to 300 μM, whereas no significant changes were found in superoxide dismutase activity. Differences of esterase isozymes under REE treatment only laid in expression level, and there were no specific bands. The expression level of some POD isozymes strengthened with increasing concentration of REEs within the range of 50–200 μM. When REE concentration was higher than 300 μM, the expression of some POD isozymes was inhibited; meanwhile, some other new POD isozymes were induced. Our results also showed REEs did not directly influence PAL activity. So, we speculated that 50–200 μM REEs could activate some of antioxidant enzymes, adjust some isozymes expression, trigger the defense responses of T. hemsleyanum suspension cells, and stimulate flavonoid accumulation by inducing PAL activity.  相似文献   

4.
Nitrogen and light are critical determinants of biomass accumulation and secondary metabolite production under in vitro culture conditions. In this study, we analyzed the effects of varied concentrations of total nitrogen in Murashige and Skoog (MS) medium and light intensity on the production of biomass, anthocyanin pigments, and bioactive antioxidants in callus cultures of Abelmoschus esculentus cv. ‘Hongjiao’. Maximum callus biomass accumulation (3 g FW) was achieved when calluses were cultured on MS medium containing 60 mM nitrogen under 40 μmol m??2 s??1 light intensity. In contrast, maximum values of total anthocyanin accumulation (TA; 7.3 CV/g FW), total phenolic content (TP; 12.07 mg/100 g FW), total flavonoid content (TF; 2.47?±?0.15 mg/100 g FW), and total antioxidant activity (TAA; 56.10 μmol Trolox/g FW) were observed when calluses were cultured on MS medium containing 40 mM total nitrogen under 80 μmol m??2 s??1 light intensity. In addition, callus grown under same culture condition exhibited high flavonoid content along with increased phenolic content and antioxidant activity. High performance liquid chromatography (HPLC) was performed for qualitative and quantity analysis of callus cultures. Most of the pigments from the callus extracts were identical with pod anthocyanins, and appeared on the ODS-column HPLC with lower concentration than the main pigments of the pod tissues. These findings indicate that callus cultures of red-pod okra represent a potential source of bioactive compounds with antioxidant properties for industrial applications.  相似文献   

5.
Ajuga bracteosa is a medicinally important plant globally used in the folk medicine against many serious ailments. In the present study, effects of two significant elicitors, methyl jasmonate (Me-J) and phenyl acetic acid (PAA) were studied on growth parameters, secondary metabolites production, and antioxidant potential in adventitious root suspension cultures of A. bracteosa. The results showed a substantial increase in biomass accumulation, exhibiting longer log phases of cultures growth in response to elicitor treatments, in comparison to control. Maximum dry biomass formation (8.88 DW g/L) was recorded on 32nd day in log phase of culture when  0.6 mg/L Me-J was applied; however, PAA at 1.2 mg/L produced maximum biomass (8.24 DW g/L) on day 40 of culture.  Furthermore, we observed the elicitors-induced enhancement in phenolic content (total phenolic content), flavonoid content (total flavonoid content) and antioxidant activity (free radical scavenging activity) in root suspension cultures of A. bracteosa. Application of 0.6 mg/L and 1.2 mg/L of Me-J, root cultures accumulated higher TPC levels (3.6 mg GAE/g DW) and (3.7 mg GAE/g DW) in the log phase and stationary phase, respectively, while 2.5 mg/L Me-J produced lower levels (1.4 mg GAE/g DW) in stationary phase of growth stages. Moreover, TFC and FRSA values were found in correspondence to TPC values in the respective growth phases at the similar elicitor treatment. Thus, a feasible protocol for establishment of adventitious roots in A. bracteosa was developed and enhancement in biomass and metabolite content in adventitious root was promoted through elicitation.  相似文献   

6.
Stevia rebaudiana (S. rebaudiana) is the most important therapeutic plant species and has been accepted as such worldwide. It has a tendency to accumulate steviol glycosides, which are 300 times sweeter than marketable sugar. Recently, diabetic patients commonly use this plant as a sugar substitute for sweet taste. In the present study, the effects of different spectral lights were investigated on biomass accumulation and production of secondary metabolites in adventitious root cultures of S. rebaudiana. For callus development, leaf explants were excised from seed-derived plantlets and inoculated on a Murashige and Skoog (MS) medium containing the combination of 2,4-dichlorophenoxy acetic acid (2, 4-D, 2.0 mg/l) and 6-benzyladenine (BA, 2.0 mg/l), while 0.5 mg/l naphthalene acetic acid (NAA) was used for adventitious root culture. Adventitious root cultures were exposed to different spectral lights (blue, green, violet, red and yellow) for a 30-day period. White light was used as control. The growth kinetics was studied for 30 days with 3-day intervals. In this study, the violet light showed the maximum accumulation of fresh biomass (2.495 g/flask) as compared to control (1.63 g/flask), while red light showed growth inhibition (1.025 g/flask) as compared to control. The blue light enhanced the highest accumulation of phenolic content (TPC; 6.56 mg GAE/g DW), total phenolic production (TPP; 101 mg/flask) as compared to control (5.44 mg GAE/g DW; 82.2 mg GAE/g DW), and exhibited a strong correlation with dry biomass. Blue light also improved the accumulation of total flavonoid content (TFC; 4.33 mg RE/g DW) and total flavonoid production (TFP; 65 mg/flask) as compared to control. The violet light showed the highest DPPH inhibition (79.72%), while the lowest antioxidant activity was observed for control roots (73.81%). Hence, we concluded that the application of spectral lights is an auspicious strategy for the enhancement of the required antioxidant secondary metabolites in adventitious root cultures of S. rebaudiana and of other medicinal plants.  相似文献   

7.
Manipulation of culture strategies was adopted to study the influence of nutrient stress, pH stress and precursor feeding on the biosynthesis of capsaicin in suspension and immobilized cell cultures of C. chinense. Cells cultured in the absence of one of the four nutrients (ammonium and potassium nitrate for nitrate and potassium stress, potassium dihydrogen orthophosphate for phosphorus stress, and sucrose for sugar stress) influenced the accumulation of capsaicin. Among the stress factors studied, nitrate stress showed maximal capsaicin production on day 20 (505.9 ± 2.8 μg g?1 f.wt) in immobilized cell, whereas in suspension cultures the maximum accumulation (345.5 ± 2.9 μg g?1 f.wt) was obtained on day 10. Different pH affected capsaicin accumulation; enhanced accumulation of capsaicin (261.6 ± 3.4 μg g?1 f.wt) was observed in suspension cultures at pH 6 on day 15, whereas in case of immobilized cultures the highest capsaicin content (433.3 ± 3.3 μg g?1 f.wt) was obtained at pH 5 on day 10. Addition of capsaicin precursors and intermediates significantly enhanced the biosynthesis of capsaicin, incorporation of vanillin at 100 μM in both suspension and immobilized cell cultures resulted in maximum capsaicin content with 499.1 ± 5.5 μg g?1 f.wt on day 20 and 1,315.3 ± 10 μg g?1 f.wt on day 10, respectively. Among the different culture strategies adopted to enhance capsaicin biosynthesis in cell cultures of C. chinense, cells fed with vanillin resulted in the maximum capsaicin accumulation. The rate of capsaicin production was significantly higher in immobilized cells as compared to freely suspended cells.  相似文献   

8.
Gymnosporia buxifolia (Celastraceae) is a well-known traditional medicinal plant used to treat various diseases. The aim of the study was to quantify the total phenolic and flavonoid content of cell biomass of G. buxifolia developed in vitro using plant growth regulators (PGRs), phloroglucinol (PG) and an antagonist of cytokinin activity 6-(2-hydroxy-3-methylbenzylamino) purine (PI55). The antibacterial activity of calli was also evaluated. The accumulation of phenolic contents and its antibacterial activity in the cell biomass varied between the treatments as well as the mother plant. Generally, a higher accumulation of phenolic contents translated to improved activity against selected pathogenic bacteria. This was apparent in biomass derived from solid and liquid MS media containing combinations of 5 µM PG, 1.5 µM benzyladenine (BA) or meta-topolin (mT) with or without 1 µM picloram (Pic) and 5 µM PG or PI55, 1 µM BA with or without 0.5 µM Pic respectively. The choice of PGRs, PG and PI55 treatments used during in vitro cell culture systems influenced the therapeutic potential of G. buxifolia. Our results indicate that the cell biomass from suspension and/or solid culture of G. buxifolia could be promising as antibacterial agents with possible applications in the pharmaceutical industry.  相似文献   

9.
Temperature and light intensity effects on biomass and lipid production were investigated in Ettlia oleoabundans to better understand some fundamental properties of this potentially useful but poorly studied microalgal species. E. oleoabundans entered dormant state at 5 °C, showed growth at 10 °C, and when exposed to light at 70 μmol photons per square meter per second at 10 °C, cells reached a biomass concentration of >2.0 g?L?1 with fatty acid methyl esters of 11.5 mg?L?1. Highest biomass productivity was at 15 °C and 25 °C regardless of light intensity, and accumulation of intracellular lipids was stimulated by nitrate depletion under these conditions. Although growth was inhibited at 35 °C, at 130 μmol photons per square meter per second lipid content reached 10.37 mg?L?1 with fatty acid content more favorable to biodiesel dominating; this occurred without nitrate depletion. In a two-phase temperature shift experiment at two nitrate levels, cells were shifted after 21 days at 15 °C to 35 °C for 8 days. Although after the shift growth continued, lipid productivity per cell was less than that in the 35 °C cultures, again without nitrate depletion. This study showed that E. oleoabundans grows well at low temperature and light intensity, and high temperature can be a useful trigger for lipid accumulation independent of nitrate depletion. This will prove useful for improving our knowledge about lipid production in this and other oleaginous algae for modifying yield and quality of algal lipids being considered for biodiesel production.  相似文献   

10.
Efficiently culturing adventitious roots (ARs) has become an alternative route for the protection and utilization of endangered plant resources. In the present study, to improve accumulation of bioactive compounds (polysaccharides, phenolics, and flavonoids) in AR cultures of endangered plant species—Oplopanax elatus—effects of methyl jasmonate (MeJA) and salicylic acid (SA) were investigated. The optimal concentration of MeJA was 200 μM and SA was 100 μM for enhancement of polysaccharide, phenolic, and flavonoid contents. In addition, MeJA (200 μM) was more suitable than SA (100 μM) for polysaccharide and flavonoid production, but both elicitors were equally favorable for phenolic production. During AR bioreactor culture, MeJA was as an elicitor to study the effect of its addition time and contact time. Contents of polysaccharides, phenolics, and flavonoids increased when MeJA was added to culture medium after 40 days of culture, but the increased degree was lower and the AR biomass significantly inhibited. However, when MeJA was added to culture medium after 30 days of culture, polysaccharide, phenolic, and flavonoid contents dramatically increased without AR biomass decrease; the maximum productivity of three bioactive compounds was found on day 8 after the MeJA treatment. Therefore, a novel elicitation method during bioreactor culture of O. elatus ARs was established in the present study, the method could be applied to commercial production of O. elatus products in the future.  相似文献   

11.
The present study is investigating the immobilization of Rubia tinctorum L. suspension cultures. The effects of three inoculation volumes and three immobilization materials (loofa, sisal and jute) on fresh and dry weights of biomass as well as on alizarin and purpurin production were determined in this study. Two grams of four-week old callus tissue were transferred to liquid medium to establish suspension cultures. After four weeks, suspension cultures of R. tinctorum at concentration of 8?×?105?living cells/ml were immobilized with lignocellulosic materials and the cells were attached to all immobilization materials at the end of the first week and started to form aggregates on them. At the fourth week of these batch systems, biomass was measured approximately three times higher than the starting suspension cultures. The highest fresh weight was obtained (339.40?g/l) from sisal with ? inoculation ratio. Immobilization materials and inoculation volumes had an effect on dry weights, and accordingly, the most effective combinations were jute with ? (J3) and ? (J1) inoculation volumes with 7.86 and 7.82?g/l dry weights, respectively. Alizarin and purpurin contents of immobilized cells, analyzed with U-HPLC method, were 6.05 and 22.91 times higher than inoculated cells. All immobilization materials used in this study had no negative effect on to cells and biomass accumulation was enhanced. Concomitantly with rapid biomass increase, alizarin and purpurin production was ascended.  相似文献   

12.
Eryngium planum L. cell and organ cultures were maintained on Murashige and Skoog media (MS), supplemented with exogenous hormones of different types and various concentrations for high biomass growth. The callus and cell suspension cultures were treated with increased sucrose concentration and/or elicited by methyl jasmonate for the enhancement of selected phenolic acids accumulation. Three phenolic acids, rosmarinic acid (RA), chlorogenic acid (CGA) and caffeic acid (CA), were detected by HPLC-DAD in those cultures. The sum of their content in the dry material was found to be higher in the shoot culture (3.95 mg g?1), root culture (7.05 mg g?1), callus (6.20 mg g?1) and cell suspension (2.04 mg g?1) than in the leaves (1.87 mg g?1) and roots (0.76 mg g?1) of intact plants. The major compound of in vitro cultures was always rosmarinic acid. The content of RA could be increased approximately threefold (16.24 mg g?1) in the callus culture and approximately twofold (3.91 mg g?1) in the cell suspension culture by elicitation with 100 μM methyl jasmonate (MeJA). The higher concentration of sucrose (S) in the medium (5, 6 %) led to over a twofold increase of CGA content in the callus culture (2.54 mg g?1). The three mentioned phenolic acids have been found in E. planum undifferentiated and differentiated in vitro cultures for the first time.  相似文献   

13.
Five cell suspension lines of Catharanthus roseus resistant to 5-methyl tryptophan (5-MT; an analogue of tryptophan) were selected and characterized for growth, free tryptophan content and terpenoid indole alkaloid accumulation. These lines showed differential tolerance to analogue-induced growth inhibition by 30 to 70 mg/l 5-MT supplementation (LD50?=?7–15 mg/l). Lines P40, D40, N30, D50 and P70 recorded growth indices (i.e. percent increment over the initial inoculum weight) of 840.9, 765.0, 643.9, 585.7 and 356.5 in the absence and, 656.7, 573.9, 705.8, 489.0 and 236.0 in the presence of 5-MT after 40 days of culture, respectively. A corresponding increment in the free tryptophan level ranging from 46.7 to 160.0 μg/g dry weight in the absence and 168.0 to 468.0 μg/g dry weight in the presence was noted in the variant lines. Higher tryptophan accumulation of 368.0 and 468.0 g/g dry weight in lines N30 and P40 in 5-MT presence also resulted in higher alkaloid accumulation (0.65 to 0.90 % dry weight) in them. High-performance liquid chromatography (HPLC) analysis of the crude alkaloid extracts of the selected lines did not show the presence of any pharmaceutically important monomeric or dimeric alkaloids except catharanthine in traces in the N30 line that was also unique in terms of a chlorophyllous green phenotype. The N30 line under optimized up-scaling conditions in a 7-l stirred tank bioreactor using Murashige and Skoog medium containing 2 mg/l α-naphthalene acetic acid and 0.2 mg/l kinetin attained 18-folds biomass accumulation within 8 weeks. Interestingly, the cell biomass yield was enhanced to 30-folds if 30 mg/l 5-MT was added in the bioreactor vessel one week prior to harvest. Crude alkaloid extract of the cells grown in shake flask and this bioreactor batch also showed the formation of yellow-coloured crystals which upon 1HNMR and ESI-MS analysis indicated a phenolic identity. This crude alkaloid extract of bioreactor-harvested cells containing this compound at 50 μg/ml concentration registered 65.21, 17.75, 97.0, 100 % more total antioxidant capacity, reducing power, total phenolic content, and ferric-reducing antioxidant power, respectively, when compared with that of extracts of cells grown in shake flask cultures. The latter, however, showed 57.47 % better radical scavenging activity (DPPH) than the bioreactor-harvested cells.  相似文献   

14.
Gymnema sylvestre is an important medicinal plant that bears bioactive compound namely gymnemic acid. In the present study, G. sylvestre was transformed by Agrobacterium rhizogenes. Seedling explants namely roots, stems, hypocotyls, cotyledonary nodal segments, cotyledons and young leaves were inoculated with A. rhizogenes strain KCTC 2703. Transformed (hairy) roots were induced from cotyledons and leaf explants. Six transgenic clones of hairy roots were established and confirmed by polymerase chain reaction (PCR) and RT-PCR using rolC specific primers. Hairy roots cultured using MS liquid medium supplemented with 3 % sucrose showed highest accumulation of biomass (97.63 g l?1 FM and 10.92 g l?1 DM) at 25 days, whereas highest accumulation of gymnemic acid content (11.30 mg g?1 DM) was observed at 20 days. Nearly 9.4-fold increment of biomass was evident in suspension cultures at 25 days of culture and hairy root biomass produced in suspension cultures possessed 4.7-fold higher gymnemic acid content when compared with the untransformed control roots. MS-based liquid medium was superior for the growth of hairy roots and production of gymnemic acid compared with other culture media evaluated (B5, NN and N6), with MS-based liquid medium supplemented with 3 % sucrose was optimal for secondary metabolite production. The current results showed great potentiality of hairy root cultures for the production of gymnemic acid.  相似文献   

15.
Tetrastigma hemsleyanum suspension cells were treated with four metal salts to screen suitable elicitors for the promotion of plant cell biomass and flavonoid production. The effects of calcium ions (Ca2+) on induction were also studied. It was found that the most effective elicitors were 50 μM of the heavy metal ion copper (Cu2+) and 100 μM of the rare earth element cerium (Ce3+). The maximal biomass levels under respective treatments over a 16-d culture period increased by 1.3- and 1.6-fold, and the total flavonoid content was 1.8- and 1.6-fold greater than the control, respectively. Reducing the exogenous Ca2+ concentration or adding Ca2+ antagonists (1 mM ethylene glycol-bis(2-aminoethylether)-N,N,N′,N-tetraacetc acid (EGTA) or 1 mM verapamil) strengthened inductive effects of metal elicitors and enhanced flavonoid production. However, 0.5 μM of the calcium ionophore A23187 showed contrary results. The increase in exogenous Ca2+ concentration in the presence of A23187 suppressed H2O2 bursts and peroxidase activity caused by metal elicitors. The results suggest that Ca2+ plays an inhibitory role in the plant cell response to metal elicitors. This suppression could have been caused by Ca2+ preventing the cells from absorbing metal ions and then easing the induction, or because the decrease of Ca2+ concentration worked as an induction signal. Therefore, reducing the Ca2+ concentration in culture medium, or adding Ca2+ antagonists could be used to improve flavonoid production and cell growth in combination with induction by metal elicitors during in vitro culture of T. hemsleyanum suspension cells.  相似文献   

16.
This study was undertaken to investigate the effects of salicylic acid (SA) and methyl jasmonate (MeJA) on anthocyanin induction, biomass accumulation, and color value (CV) indices for both pigment content (PC) and pigment production (PP) in callus cultures of Rosa hybrida cv. Pusa Ajay. A concentration-dependent response was exhibited by cultures on SA and MeJA at different concentrations individually or in combinations to Euphorbia millii medium supplemented with 204.5 mM sucrose, 2.45 μM indole butyric acid and 2.33 μM kinetin. There was positive influence on both callus biomass and anthocyanin accumulation. Treatment with 0.5 μM MeJA was most effective in inducing anthocyanin biosynthesis in callus cultures. Anthocyanin accumulation in callus cultures was enhanced with the addition of SA and MeJA, but these did not differ significantly from control for the number of days required for pigment initiation and for color intensification. Moreover, the addition of 0.5 μM MeJA alone resulted in a higher frequency of color response (97.25 %), PC (3.48 ± 0.07 CV g?1 FW), and PP (1.56 ± 0.03 CV test tube?1) over control. In contrast, the presence of higher levels of SA (400 μM) and MeJA (5.0 μM) reduced frequency of color response, as well as levels of PC and PP. MeJA did not increase biomass accumulation but promoted frequency of color response, PC and PP. Hence, it was suggested that 0.5 μM MeJA promoted anthocyanin production in rose callus cultures. Significant correlation was found between frequency of response and each of the PC (r = 0.988) and PP (r = 0.990). Furthermore, PC and PP were also highly correlated (r = 0.998).  相似文献   

17.
We compared the ability of different plant-based expression platforms to produce geraniol, a key metabolite in the monoterpenoid branch of the terpenoid indole alkaloid biosynthesis pathway. A geraniol synthase gene isolated from Valeriana officinalis (VoGES) was stably expressed in different tobacco systems. Intact plants were grown in vitro and in the greenhouse and were used to generate cell suspension and hairy root cultures. VoGES was also transiently expressed in N. benthamiana. The highest geraniol content was produced by intact transgenic plants grown in vitro (48 μg/g fresh weight, fw), followed by the transient expression system (27 μg/g fw), transgenic plants under hydroponic conditions in the greenhouse and cell suspension cultures (16 μg/g fw), and finally hairy root cultures (9 μg/g fw). Differences in biomass production and the duration of cultivation resulted in a spectrum of geraniol productivities. Cell suspension cultures achieved a geraniol production rate of 1.8 μg/g fresh biomass per day, whereas transient expression produced 5.9 μg/g fresh biomass per day (if cultivation prior to agroinfiltration is ignored) or 0.5 μg/g fresh biomass per day (if cultivation prior to agroinfiltration is included). The superior productivity, strict process control and simple handling procedures available for transgenic cell suspension cultures suggest that cells are the most promising system for further optimization and ultimately for the scaled-up production of geraniol.  相似文献   

18.
Responses of Puccinellia distans, a halophytic grass to low (50 mM) and high (200 mM) NaCl salinity, were studied in a sand culture experiment without or with inoculation by arbuscular mycorrhizal fungus (AMF), Claroideoglomus etunicatum isolated from its saline habitat. Plant biomass was not influenced by salinity levels, while a tendency to a higher biomass was observed in AMF plants under both control and saline conditions. Leaf photosynthesis increased by both salinity and AMF inoculation. Despite higher transpiration rate, AMF plants had higher water-use efficiency under sever saline conditions. AMF inoculation decreased proline concentration, but increased significantly leaf osmotic potential. Antioxidative enzymes responded differently to the salt and AMF treatments depending on the salt concentration and plant organ. Nonetheless, salt-induced malondialdehyde accumulation in the leaves diminished by AMF colonization. K and Ca contents were not affected by salt, while fungal colonization increased K in the roots and Ca in both leaves and roots. Our results indicated that enhancement of photosynthesis and ion homeostasis is involved in the tolerance of P. distans to both low and high salinity. AMF inoculation increased plants’ tolerance by augmentation of the above mechanisms accompanied by improvement of water relations and protection against oxidative damage in the leaves.  相似文献   

19.
The salt-tolerant green microalga Dunaliella salina can survive both hyper- and hypo-osmotic shock. Upon osmotic shock, the cells transiently and rapidly decreased or increased in size within minutes and slowly over hours acquired their original cell size and volume. Cell size distribution differs significantly in the cultures grown in the salinity range from 1.5 to 15 % NaCl. By using Nile Red fluorescence to detect neutral lipids, it became clear that only hyper-osmotic shock on cells induced transient neutral lipid appearance in D. salina, while those transferred from 9 to 15 % NaCl stimulated the most neutral lipid accumulation. These cells grew well in 9 % NaCl, but they cannot recover a shift to 15 % NaCl and cell division is accordingly slowed down. The transient appearance of neutral lipid could be dependent on the inhibition of cell division experiencing the NaCl shift. Moreover, the effect of nutrient limitation slows down cell division and photosynthesis as a secondary result, which triggers the cells to accumulate neutral storage lipids when they entered the stationary phase, which is seen in all the batch cultures of D. salina grown in the salinity range of 3–15 %. The changes in salt concentration did not significantly influence the overall fatty acid composition in D. salina cells. Although there shows both increased amounts of total lipids and neutral lipids in the cells grown in salinity higher than 9 % NaCl, lipid productivity is however compromised by the slower cell growth rate and lower cell density under this condition.  相似文献   

20.
Spodoptera exigua Se301 cells have been successfully adapted to two different commercial serum-free media (SFM; Ex-Cell 420 and Serum-Free Insect Medium-1) by gradually reducing the 10 %-added serum-containing medium content from 100 % to 0 % (v/v) in suspended cultures. Both direct adaptation to a serum-free medium and cell growth in the absence of protective additives against fluid dynamic stress [polyvinyl pyrrolidone and polyvinyl alcohol] and disaggregation [dextran sulfate] proved impossible. Cells grew reproducibly in both SFMs once the serum had been completely removed, although the use of Ex-Cell 420 resulted in higher growth rates and cell densities. Turbulence was sufficiently high to reduce growth rates and final cell densities at the highest Reynolds number investigated, although no clear influence of agitation was observed on virus productivity. Both attached and suspended Se301 cell cultures were successfully infected with the SeMNPV baculovirus. Cells adapted to different conditions (attached or suspended culture, serum-containing or serum-free medium) showed different occlusion bodies productivities at the two multiplicities of infection assayed (0.1 and 0.5).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号