首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The dissection of gene-trait associations and its translation into practice through plant breeding is a central aspect of modern plant biology. The identification of genes underlying simply inherited traits has been very successful. However, the identification of gene-trait associations for complex (multi-genic) traits in crop plants with large, often polyploid genomes has been limited by the absence of appropriate genetic resources that allow quantitative trait loci (QTL) and causal genes to be identified and localised. There has also been a tendency for genetic resources to be developed in germplasm not directly relevant to the breeding community limiting effective implementation. In this review, we discuss approaches to mapping genes and the development of Multi-parent Advanced Generation Inter-cross (MAGIC) populations derived from breeder-relevant germplasm as a platform for a new generation of gene-trait analysis in crop species.  相似文献   

3.
全基因组关联分析(GWAS)是动植物复杂性状相关基因定位的常用手段。高通量基因分型技术的应用极大地推动了GWAS的发展。在植物中, 利用GWAS不仅能够以较高的分辨率在全基因组水平鉴定出各种自然群体特定性状相关的基因或区间, 而且可揭示表型变异的遗传架构全景图。目前, 人们利用GWAS分析方法已在拟南芥(Arabidopsis thaliana)、水稻(Oryza sativa)、小麦(Triticum aestivum)、玉米(Zea mays)和大豆(Glycine max)等模式植物和重要农作物品系中发掘出与各种性状显著相关的数量性状座位(QTL)及其候选基因位点, 阐明了这些性状的遗传基础, 并为揭示这些性状背后的分子机理提供候选基因, 也为作物高产优质品种的选育提供了理论依据。该文对GWAS的方法、影响因素及数据分析流程进行了详细描述, 以期为相关研究提供参考。  相似文献   

4.
为明确银川番茄(Lycopersicon esculentum)是否遭受了番茄斑萎病毒(TSWV)的危害, 采用国家标准TSWV RT- PCR检测技术对银川番茄上采集的14份疑似感染TSWV病叶样本进行分子鉴定, 对克隆得到的核衣壳蛋白基因N (Nucleocapsid)序列进行多序列比对和系统进化树分析, 随后对PCR阳性样本进行蛋白检测。结果表明, 14份病叶样本中有8份扩增出长度为394 bp的TSWV N基因序列, 且8条序列完全一致; 获得的银川番茄TSWV分离物与云南番茄、中国莴苣(Lactuca sativa)、中国鸢尾(Iris tectorum)和重庆辣椒(Capsicum annuum) TSWV分离物相对近缘, 与山东、黑龙江和北京等地及国外TSWV分离物相对远缘; 利用TSWV的抗体通过Western blot对8个PCR阳性样本进一步检测, 结果也证实8个阳性样本中存在TSWV感染。该研究首次通过分子鉴定及蛋白检测证明银川番茄上存在TSWV感染, 需要加快抗TSWV番茄品种的选育工作。  相似文献   

5.
The genetic basis of host plant use by phytophagous insects can provide insight into the evolution of ecological niches, especially phenomena such as specialization and phylogenetic conservatism. We carried out a quantitative genetic analysis of multiple host use traits, estimated on five species of host plants, in the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Mean values of all characters varied among host plants, providing evidence that adaptation to plants may require evolution of both behavioral (preference) and post-ingestive physiological (performance) characteristics. Significant additive genetic variation was detected for several characters on several hosts, but not in the capacity to use the two major hosts, a pattern that might be caused by directional selection. No negative genetic correlations across hosts were detected for any 'performance' traits, i.e. we found no evidence of trade-offs in fitness on different plants. Larval consumption was positively genetically correlated across host plants, suggesting that diet generalization might evolve as a distinct trait, rather than by independent evolution of feeding responses to each plant species, but several other traits did not show this pattern. We explored genetic correlations among traits expressed on a given plant species, in a first effort to shed light on the number of independent traits that may evolve in response to selection for host-plant utilization. Most traits were not correlated with each other, implying that adaptation to a novel potential host could be a complex, multidimensional 'character' that might constrain adaptation and contribute to the pronounced ecological specialization and the phylogenetic niche conservatism that characterize many clades of phytophagous insects.  相似文献   

6.
Novel throughput phenotyping platforms in plant genetic studies   总被引:2,自引:0,他引:2  
Unraveling the genetic basis of complex traits in plants is limited by the lack of appropriate phenotyping platforms that enable high-throughput screening of many genotypes in multilocation field trials. Near-infrared spectroscopy on agricultural harvesters and spectral reflectance of plant canopies have recently been reported as promising components of novel phenotyping platforms. Understanding the genetic basis of complex traits is now within reach with the use of these new techniques.  相似文献   

7.
The genetic analysis of mate choice is fraught with difficulties. Males produce complex signals and displays that can consist of a combination of acoustic, visual, chemical and behavioural phenotypes. Furthermore, female preferences for these male traits are notoriously difficult to quantify. During mate choice, genes not only affect the phenotypes of the individual they are in, but can influence the expression of traits in other individuals. How can genetic analyses be conducted to encompass this complexity? Tighter integration of classical quantitative genetic approaches with modern genomic technologies promises to advance our understanding of the complex genetic basis of mate choice.  相似文献   

8.
Summary Estimating quantitative contributions to specific traits can be accomplished from a variety of genetic models (Mather 1949; Mather and Jinks 1971; Falconer 1981). Residual genetic effects, those beyond main and interaction effects of the embryo genotype, are often pooled under a single classification, termed maternal effects. Maternal contributions to seed-related traits can originate from various maternal sources (e.g., endosperm, testa and cytoplasm). Quantitative contributions of a maternal nature are not predictable from parental performance and effects are largely non-persistent over generations (Jinks et al. 1972). The methods used to determine maternal effects in quantitative traits often do not measure quantitative genetic parameters, while those that do are either complex or partially resolve potential contributions of individual sources of maternal effects. We present simple genetic models for estimating quantitative genetic parameters which take into account maternal effects expressed in the major seed tissues of higher plants.  相似文献   

9.
Association genetics of complex traits in plants   总被引:5,自引:0,他引:5  
Association mapping is rapidly becoming the main method for dissecting the genetic architecture of complex traits in plants. Currently most association mapping studies in plants are preformed using sets of genes selected to be putative candidates for the trait of interest, but rapid developments in genomics will allow for genome-wide mapping in virtually any plant species in the near future. As the costs for genotyping are decreasing, the focus has shifted towards phenotyping. In plants, clonal replication and/or inbred lines allows for replicated phenotyping under many different environmental conditions. Reduced sequencing costs will increase the number of studies that use RNA sequencing data to perform expression quantitative trait locus (eQTL) mapping, which will increase our knowledge of how gene expression variation contributes to phenotypic variation. Current population sizes used in association mapping studies are modest in size and need to be greatly increased if mutations explaining less than a few per cent of the phenotypic variation are to be detected. Association mapping has started to yield insights into the genetic architecture of complex traits in plants, and future studies with greater genome coverage will help to elucidate how plants have managed to adapt to a wide variety of environmental conditions.  相似文献   

10.
通过转基因技术改良植物品质近几年已成为热点研究问题,基因工程不断发展,单基因转化技术已不能满足人们对植物改良的需要。更多的研究者投身于参与某个代谢途径的多个基因在植物体中共同表达的研究,通过多基因调控来获得更好的植物性状。基因的协调表达有四种研究思路,在此基础上多基因转化方法可概述为传统转化法、改进后的共转化法,及新兴的基因融合方法,综合分析每种方法在植物代谢调控中的优缺点与应用,并探讨多基因整合的不稳定及相互作用问题。  相似文献   

11.
The field of behavioral genetics has enormous potential to uncover both genetic and environmental influences on normal and deviant behavior. Behavioral-genetic methods are based on a solid foundation of theories and methods that successfully have delineated components of complex traits in plants and animals. New resources are now available to dissect the genetic component of these complex traits. As specific genes are identified, we can begin to explore how these interact with environmental factors in development. How we interpret such findings, how we ask new questions, how we celebrate the knowledge, and how we use or misuse this knowledge are all important considerations. These issues are pervasive in all areas of human research, and they are especially salient in human behavioral genetics.  相似文献   

12.
H W Deng 《Genetics》2001,159(3):1319-1323
Association studies using random population samples are increasingly being applied in the identification and inference of genetic effects of genes underlying complex traits. It is well recognized that population admixture may yield false-positive identification of genetic effects for complex traits. However, it is less well appreciated that population admixture can appear to mask, change, or reverse true genetic effects for genes underlying complex traits. By employing a simple population genetics model, we explore the effects and the conditions of population admixture in masking, changing, or even reversing true genetic effects of genes underlying complex traits.  相似文献   

13.
Yield-enhancing quantitative trait loci (QTLs) from wild species   总被引:1,自引:0,他引:1  
Wild species of crop plants are increasingly being used to improve various agronomic traits including yield in cultivars. Dense molecular maps have enabled mapping of quantitative trait loci (QTLs) for complex traits such as yield. QTLs for increased yield have been identified from wild relatives of several crop plants. Advanced backcross QTL analysis has been used to identify naturally occurring favorable QTL alleles for yield and minimize the effect of unwanted alleles from wild species. Yield QTLs from wild species are distributed on almost all chromosomes but more often in some regions. Many QTLs for yield and related traits derived from different wild accessions or species map to identical chromosomal regions. QTLs for highly correlated yield associated traits are also often co-located implying linkage or pleiotropic effects. Many QTLs have been detected in more than one environment and in more than one genetic background. The overall direction of effect of some QTLs however, may vary with genetic context. Thus, there is evidence of stable and consistent major effect yield-enhancing QTLs derived from wild species in several crops. Such QTLs are good targets for use in marker assisted selection though their context-dependency is a major constraint. Literature on yield QTLs mapped from wild species is summarized with special reference to rice and tomato.  相似文献   

14.
Unraveling the genetic background of economic traits is a major goal in modern animal genetics and breeding. Both candidate gene analysis and QTL mapping have previously been used for identifying genes and chromosome regions related to studied traits. However, most of these studies may be limited in their ability to fully consider how multiple genetic factors may influence a particular phenotype of interest. If possible, taking advantage of the combined effect of multiple genetic factors is expected to be more powerful than analyzing single sites, as the joint action of multiple loci within a gene or across multiple genes acting in the same gene set will likely have a greater influence on phenotypic variation. Thus, we proposed a pipeline of gene set analysis that utilized information from multiple loci to improve statistical power. We assessed the performance of this approach by both simulated and a real IGF1-FoxO pathway data set. The results showed that our new method can identify the association between genetic variation and phenotypic variation with higher statistical power and unravel the mechanisms of complex traits in a point of gene set. Additionally, the proposed pipeline is flexible to be extended to model complex genetic structures that include the interactions between different gene sets and between gene sets and environments.  相似文献   

15.
将三倍体胚乳性状的数量遗传模型和二倍体性状数量基因(QTL)图构建方法相结合,导出双侧标记基因型下有关胚乳性状QTL的遗传组成、平均数和遗传方差分量,据之提出以某一区间双侧标记基因型胚乳性状的平均值为依变数,以该区间内任一点假定存在的QTL的加性效应d、显性效应h1和/或h2的系数为自变数,进行有重复观察值的多元线性回归分析,根据多元线性回归的显著性测验该点是否存在QTL,并估计出QTL的遗传效应。给定区间内任一点,皆可以此进行分析,从而可在整条染色体上作图,并以之确定QTL的数目和最可能位置,同时,在检测某一区间时,利用多元线性回归方法将该区间外可能存在的QTL的干扰进行统计控制,以提高QTL检测的精度。此外,还讨论了如何将之推广应用于其他类型的DNA不对应资料以及具复杂遗传模型的胚乳性状资料。  相似文献   

16.
The seeds of flowering plants develop from double fertilization and play a vital role in reproduction and supplying human and animal food. The genetic variation of seed traits is influenced by multiple genetic systems, e.g., maternal, embryo, and/or endosperm genomes. Understanding the genetic architecture of seed traits is a major challenge because of this complex mechanism of multiple genetic systems, especially the epistasis within or between different genomes and their interactions with the environment. In this study, a statistical model was proposed for mapping QTL with epistasis and QTL-by-environment (QE) interactions underlying endosperm and embryo traits. Our model integrates the maternal and the offspring genomes into one mapping framework and can accurately analyze maternal additive and dominant effects, endosperm/embryo additive and dominant effects, and epistatic effects of two loci in the same or two different genomes, as well as interaction effects of each genetic component of QTL with environment. Intensive simulations under different sampling strategies, heritabilities, and model parameters were performed to investigate the statistical properties of the model. A set of real cottonseed data was analyzed to demonstrate our methods. A software package, QTLNetwork-Seed-1.0.exe, was developed for QTL analysis of seed traits.  相似文献   

17.

Background  

Verticillium spp. are major pathogens of dicotyledonous plants such as cotton, tomato, olive or oilseed rape. Verticillium symptoms are often ambiguous and influenced by development and environment. The aim of the present study was to define disease and resistance traits of the complex Verticillium longisporum syndrome in Arabidopsis thaliana (L.) Heynh. A genetic approach was used to determine genetic, developmental and environmental factors controlling specific disease and resistance traits and to study their interrelations.  相似文献   

18.
19.
Genetic association studies are identifying genetic risks for common complex ocular traits such as age-related macular degeneration (AMD). The subjects used for discovery of these loci have been largely from clinic-based, case-control studies. Typically, only the primary phenotype (e.g., AMD) being studied is systematically documented and other complex traits (e.g., affecting the eye) are largely ignored. The purpose of this study was to characterize these other or secondary complex ocular traits present in the cases and controls of clinic-based studies being used for genetic study of AMD. The records of 100 consecutive new patients (of any diagnosis) age 60 or older for which all traits affecting the eye had been recorded systematically were reviewed. The average patient had 3.5 distinct diagnoses. A subset of 10 complex traits was selected for further study because they were common and could be reliably diagnosed. The density of these 10 complex ocular traits increased by 0.017 log-traits/year (P = 0.03), ranging from a predicted 2.74 at age 60 to 4.45 at age 90. Trait-trait association was observed only between AMD and primary vitreomacular traction (P = 0.0009). Only 1% of subjects age 60 or older had no common complex traits affecting the eye. Extrapolations suggested that a study of 2000 similar subjects would have sufficient power to detect genetic association with an odds ratio of 2.0 or less for 4 of these 10 traits. In conclusion, the high prevalence of complex traits affecting the aging eye and the inherent biases in referral patterns leads to the potential for confounding by undocumented secondary traits within case-control studies. In addition to the primary trait, other common ocular phenotypes should be systematically documented in genetic association studies so that adjustments for potential trait-trait associations and other bias can be made and genetic risk variants identified in secondary analyses.  相似文献   

20.
Floral traits endowing high reproductive fitness can also affect the probability of plants contracting sexually transmitted diseases. We explore how variations in floral traits influence the fitness of Silene dioica females in their interactions with pollinators carrying pollen or spores of the sterilizing anther-smut fungus Microbotryum violaceum. We collected healthy and infected plants in a highly diseased population and grew them under conditions that 'cure' infected individuals, and used standard regression methods to detect natural selection on floral traits. Narrow-sense heritabilities, coefficients of additive genetic variation (CV(A)) and genetic correlations among traits were estimated from paternal half-sib groups. Pollinator preferences imposed strong direct and directional selection on traits affecting female attractiveness and pollen-/spore-capturing abilities. Levels of additive genetic variance were high in these traits, suggesting that rapid responses to selection are possible. By considering our results in the light of spatial and temporal heterogeneity resulting from the colonization dynamics typical for this species, we suggest that the conflicting selective effects of pollen/spore loads lead to the maintenance of genetic variation in these traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号