首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gene duplication and the uniqueness of vertebrate genomes circa 1970-1999   总被引:6,自引:0,他引:6  
In this article I review research undertaken over the past 30 years into the role that gene duplication played in shaping vertebrate genomes. I discuss early karyotype studies that pointed to a relative stability of mammalian and avian genomes, the discovery and possible evolutionary significance of enormous genomes in urodele amphibians and lungfish, genome compaction in certain specialised bony fish, evidence for two rounds of total genome doubling in early vertebrate evolution and the fate of duplicated genes in polyploid fish.  相似文献   

2.
The gain and loss of genes during 600 million years of vertebrate evolution   总被引:1,自引:1,他引:0  

Background  

Gene duplication is assumed to have played a crucial role in the evolution of vertebrate organisms. Apart from a continuous mode of duplication, two or three whole genome duplication events have been proposed during the evolution of vertebrates, one or two at the dawn of vertebrate evolution, and an additional one in the fish lineage, not shared with land vertebrates. Here, we have studied gene gain and loss in seven different vertebrate genomes, spanning an evolutionary period of about 600 million years.  相似文献   

3.
One important mechanism for functional innovation during evolution is the duplication of genes and entire genomes. Evidence is accumulating that during the evolution of vertebrates from early deuterostome ancestors entire genomes were duplicated through two rounds of duplications (the 'one-to-two-to-four' rule). The first genome duplication in chordate evolution might predate the Cambrian explosion. The second genome duplication possibly dates back to the early Devonian. Recent data suggest that later in the Devonian, the fish genome was duplicated for a third time to produce up to eight copies of the original deuterostome genome. This last duplication took place after the two major radiations of jawed vertebrate life, the ray-finned fish (Actinopterygia) and the sarcopterygian lineage, diverged. Therefore the sarcopterygian fish, which includes the coelacanth, lungfish and all land vertebrates such as amphibians, reptiles, birds and mammals, tend to have only half the number of genes compared with actinopterygian fish. Although many duplicated genes turned into pseudogenes, or even 'junk' DNA, many others evolved new functions particularly during development. The increased genetic complexity of fish might reflect their evolutionary success and diversity.  相似文献   

4.
基因倍增研究进展   总被引:2,自引:0,他引:2  
李鸿健  谭军 《生命科学》2006,18(2):150-154
基因倍增是指DNA片段在基因组中复制出一个或更多的拷贝,这种DNA片段可以是一小段基因组序列、整条染色体,甚至是整个基因组。基因倍增是基因组进化最主要的驱动力之一,是产生具有新功能的基因和进化出新物种的主要原因之一。本文综述了脊椎动物、模式植物和酵母在进化过程中基因倍增研究领域的最新进展,并讨论了基因倍增研究的发展方向。  相似文献   

5.
It has been proposed that two events of duplication of the entire genome occurred early in vertebrate history (2R hypothesis). Several phylogenetic studies with a few gene families (mostly Hox genes and proteins from the MHC) have tried to confirm these polyploidization events. However, data from a single locus cannot explain the evolutionary history of a complete genome. To study this 2R hypothesis, we have taken advantage of the phylogenetic position of the lamprey to study the history of gene duplications in vertebrates. We selected most gene families that contain several paralogous genes in vertebrates and for which lamprey genes and an out-group are known in databases. In addition, we isolated members of the nuclear receptor superfamily in lamprey. Hagfish genes were also analyzed and found to confirm the lamprey gene analysis. Consistent with the 2R hypothesis, the phylogenetic analysis of 33 selected gene families, dispersed through the whole genome, revealed that one period of gene duplication arose before the lamprey-gnathostome split and this was followed by a second period of gene duplication after the lamprey-gnathostome split. Nevertheless, our analysis suggests that numerous gene losses and other gene-genome duplications occurred during the evolution of the vertebrate genomes. Thus, the complexity of all the paralogy groups present in vertebrates should be explained by the contribution of genome duplications (2R hypothesis), extra gene duplications, and gene losses.  相似文献   

6.
Whole-genome duplications have shaped the genomes of several vertebrate, plant, and fungal lineages. Earlier studies have focused on establishing when these events occurred and on elucidating their functional and evolutionary consequences, but we still lack sufficient understanding of how genome duplications first originated. We used phylogenomics to study the ancient genome duplication occurred in the yeast Saccharomyces cerevisiae lineage and found compelling evidence for the existence of a contemporaneous interspecies hybridization. We propose that the genome doubling was a direct consequence of this hybridization and that it served to provide stability to the recently formed allopolyploid. This scenario provides a mechanism for the origin of this ancient duplication and the lineage that originated from it and brings a new perspective to the interpretation of the origin and consequences of whole-genome duplications.  相似文献   

7.
基因倍增和脊椎动物起源   总被引:1,自引:1,他引:0  
有机体基因复制导致基因复杂性增加及其和脊椎动物起源的关系已经成为进化生物学研究的热点。20世纪70年代由Ohno提出后经Holland等修正的原始脊索动物经两轮基因组复制产生脊椎动物的假设目前已被广泛接受。脊椎动物起源和进化过程中发生过两轮基因组复制的主要证据有三点:(1)据估计脊椎动物基因组内编码基因数目大约相当于果蝇、海鞘等无脊椎动物的4倍;原口动物如果蝇和后口动物如头索动物文昌鱼的基因组大都只有单拷贝的基因,而脊椎动物的基因组则通常有4个同属于一个家族的基因。(2)无脊椎动物如节肢动物、海胆和头索动物文昌鱼都只有一个Hox基因簇,而脊椎动物除鱼类外,有7个具有Hox基因簇,其余都具有4个Hox基因簇。(3)基因作图证明,不但在鱼类和哺乳动物染色体广大片段上基因顺序相似,而且有证据显示哺乳动物基因组不同染色体之间存在相似性。据认为第一次基因倍增发生在脊椎动物与头索动物分开之后,第二次基因倍增发生在有颌类脊椎动物和无颌类脊椎动物分开以后。但是,基因是逐个发生倍增,还是通过基因组内某些DNA片段抑或整个基因组的加倍而实现的,目前还颇有争议。  相似文献   

8.
Consequences of genome duplication   总被引:8,自引:0,他引:8  
Polyploidy has been widely appreciated as an important force in the evolution of plant genomes, but now it is recognized as a common phenomenon throughout eukaryotic evolution. Insight into this process has been gained by analyzing the plant, animal, fungal, and recently protozoan genomes that show evidence of whole genome duplication (a transient doubling of the entire gene repertoire of an organism). Moreover, comparative analyses are revealing the evolutionary processes that occur as multiple related genomes diverge from a shared polyploid ancestor, and in individual genomes that underwent several successive rounds of duplication. Recent research including laboratory studies on synthetic polyploids indicates that genome content and gene expression can change quickly after whole genome duplication and that cross-genome regulatory interactions are important. We have a growing understanding of the relationship between whole genome duplication and speciation. Further, recent studies are providing insights into why some gene pairs survive in duplicate, whereas others do not.  相似文献   

9.
One theory formalised in 1970 proposes that the complexity of vertebrate genomes originated by means of genome duplication at the base of the vertebrate lineage. Since then, the theory has remained both popular and controversial. Here we review the theory, and present preliminary results from our analysis of duplications in the draft human genome sequence. We find evidence for extensive duplication of parts of the genome. We also question the validity of the 'parsimony test' that has been used in other analyses.  相似文献   

10.
The number and role of whole-genome duplications in vertebrate evolution has intrigued evolutionary biologists since Ohno first proposed genome duplication as the force driving the 'big leap' in vertebrate morphological innovation. Attempts to resolve these issues have been thwarted by small and noisy datasets, and by lack of computational accuracy and statistical rigor. Recently, Ken Wolfe and colleagues presented a genome-scale, statistically rigorous analysis of evidence based on the spatial organization of duplicated genes, as well as estimates of duplication times. Their results provide the strongest evidence to date of large-scale duplication throughout the vertebrate genome, consistent with at least one whole-genome duplication.  相似文献   

11.
Vertebrate genomes are larger than invertebrates and show evidence of extensive gene duplication, including many collinear chromosomal segments. On the basis of this intra-genomic synteny, it has been proposed that two rounds of whole genome duplication (octaploidy) occurred early in the vertebrate lineage. Recently, this early vertebrate octaploidy has been challenged on the basis of gene trees. We report new linkage groups encompassing the matrilin (MATN), syndecan (SDC), Eyes Absent (EYA), HCK kinase and SRC kinase paralogous gene quartets. In contrast to other studies, the sequence trees are weakly supportive of ancient octaploidy. It is concluded that there is no strong evidence against the octaploidy, provided that consecutive genome duplication was rapid.  相似文献   

12.
The ray-finned fishes ('fishes') vary widely in genome size, morphology and adaptations. Teleosts, which comprise approximately 23600 species, constitute >99% of living fishes. The radiation of teleosts has been attributed to a genome duplication event, which is proposed to have occurred in an ancient teleost. But more evidence is required to support the genome-duplication hypothesis and to establish a causal relationship between additional genes and teleost diversity. Fish genomes seem to be 'plastic' in comparison with other vertebrate genomes because genetic changes, such as polyploidization, gene duplications, gain of spliceosomal introns and speciation, are more frequent in fishes.  相似文献   

13.
Yuan Z  Sun X  Liu H  Xie J 《PloS one》2011,6(3):e17666
MicroRNAs (miRNAs) are a class of small noncoding RNAs that regulate gene expression by targeting mRNAs for translation repression or mRNA degradation. Many miRNAs are being discovered and studied, but in most cases their origin, evolution and function remain unclear. Here, we characterized miRNAs derived from repetitive elements and miRNA families expanded by segmental duplication events in the human, rhesus and mouse genomes. We applied a comparative genomics approach combined with identifying miRNA paralogs in segmental duplication pair data in a genome-wide study to identify new homologs of human miRNAs in the rhesus and mouse genomes. Interestingly, using segmental duplication pair data, we provided credible computational evidence that two miRNA genes are located in the pseudoautosomal region of the human Y chromosome. We characterized all the miRNAs whether they were derived from repetitive elements or not and identified significant differences between the repeat-related miRNAs (RrmiRs) and non-repeat-derived miRNAs in (1) their location in protein-coding and intergenic regions in genomes, (2) the minimum free energy of their hairpin structures, and (3) their conservation in vertebrate genomes. We found some lineage-specific RrmiR families and three lineage-specific expansion families, and provided evidence indicating that some RrmiR families formed and expanded during evolutionary segmental duplication events. We also provided computational and experimental evidence for the functions of the conservative RrmiR families in the three species. Together, our results indicate that repetitive elements contribute to the origin of miRNAs, and large segmental duplication events could prompt the expansion of some miRNA families, including RrmiR families. Our study is a valuable contribution to the knowledge of evolution and function of non-coding region in genome.  相似文献   

14.
Clustering of main orthologs for multiple genomes   总被引:1,自引:0,他引:1  
The identification of orthologous genes shared by multiple genomes is critical for both functional and evolutionary studies in comparative genomics. While it is usually done by sequence similarity search and reconciled tree construction in practice, recently a new combinatorial approach and high-throughput system MSOAR for ortholog identification between closely related genomes based on genome rearrangement and gene duplication has been proposed in Fu et al. MSOAR assumes that orthologous genes correspond to each other in the most parsimonious evolutionary scenario, minimizing the number of genome rearrangement and (postspeciation) gene duplication events. However, the parsimony approach used by MSOAR limits it to pairwise genome comparisons. In this paper, we extend MSOAR to multiple (closely related) genomes and propose an ortholog clustering method, called MultiMSOAR, to infer main orthologs in multiple genomes. As a preliminary experiment, we apply MultiMSOAR to rat, mouse, and human genomes, and validate our results using gene annotations and gene function classifications in the public databases. We further compare our results to the ortholog clusters predicted by MultiParanoid, which is an extension of the well-known program InParanoid for pairwise genome comparisons. The comparison reveals that MultiMSOAR gives more detailed and accurate orthology information, since it can effectively distinguish main orthologs from inparalogs.  相似文献   

15.

Background

The composition and expression of vertebrate gene families is shaped by species specific gene loss in combination with a number of gene and genome duplication events (R1, R2 in all vertebrates, R3 in teleosts) and depends on the ecological and evolutionary context. In this study we analyzed the evolutionary history of the solute carrier 1 (SLC1) gene family. These genes are supposed to be under strong selective pressure (purifying selection) due to their important role in the timely removal of glutamate at the synapse.

Results

In a genomic survey where we manually annotated and analyzing sequences from more than 300 SLC1 genes (from more than 40 vertebrate species), we found evidence for an interesting evolutionary history of this gene family. While human and mouse genomes contain 7 SLC1 genes, in prototheria, sauropsida, and amphibia genomes up to 9 and in actinopterygii up to 13 SLC1 genes are present. While some of the additional slc1 genes in ray-finned fishes originated from R3, the increased number of SLC1 genes in prototheria, sauropsida, and amphibia genomes originates from specific genes retained in these lineages. Phylogenetic comparison and microsynteny analyses of the SLC1 genes indicate, that theria genomes evidently lost several SLC1 genes still present in the other lineage. The genes lost in theria group into two new subfamilies of the slc1 gene family which we named slc1a8/eaat6 and slc1a9/eaat7.

Conclusions

The phylogeny of the SLC1/EAAT gene family demonstrates how multiple genome reorganization and duplication events can influence the number of active genes. Inactivation and preservation of specific SLC1 genes led to the complete loss of two subfamilies in extant theria, while other vertebrates have retained at least one member of two newly identified SLC1 subfamilies.  相似文献   

16.
Paralemmin-1 is a protein implicated in plasma membrane dynamics, the development of filopodia, neurites and dendritic spines, as well as the invasiveness and metastatic potential of cancer cells. However, little is known about its mode of action, or about the biological functions of the other paralemmin isoforms: paralemmin-2, paralemmin-3 and palmdelphin. We describe here evolutionary analyses of the paralemmin gene family in a broad range of vertebrate species. Our results suggest that the four paralemmin isoform genes (PALM1, PALM2, PALM3 and PALMD) arose by quadruplication of an ancestral gene in the two early vertebrate genome duplications. Paralemmin-1 and palmdelphin were further duplicated in the teleost fish specific genome duplication. We identified a unique sequence motif common to all paralemmins, consisting of 11 highly conserved residues of which four are invariant. A single full-length paralemmin homolog with this motif was identified in the genome of the sea lamprey Petromyzon marinus and an isolated putative paralemmin motif could be detected in the genome of the lancelet Branchiostoma floridae. This allows us to conclude that the paralemmin gene family arose early and has been maintained throughout vertebrate evolution, suggesting functional diversification and specific biological roles of the paralemmin isoforms. The paralemmin genes have also maintained specific features of gene organisation and sequence. This includes the occurrence of closely linked downstream genes, initially identified as a readthrough fusion protein with mammalian paralemmin-2 (Palm2-AKAP2). We have found evidence for such an arrangement for paralemmin-1 and -2 in several vertebrate genomes, as well as for palmdelphin and paralemmin-3 in teleost fish genomes, and suggest the name paralemmin downstream genes (PDG) for this new gene family. Thus, our findings point to ancient roles for paralemmins and distinct biological functions of the gene duplicates.  相似文献   

17.
Gene duplication has certainly played a major role in structuring vertebrate genomes but the extent and nature of the duplication events involved remains controversial. A recent study identified two major episodes of gene duplication: one episode of putative genome duplication ca. 500 Myr ago and a more recent gene-family expansion attributed to segmental or tandem duplications. We confirm this pattern using methods not reliant on molecular clocks for individual gene families. However, analysis of a simple model of the birth-death process suggests that the apparent recent episode of duplication is an artefact of the birth-death process. We show that a constant-rate birth-death model is appropriate for gene duplication data, allowing us to estimate the rate of gene duplication and loss in the vertebrate genome over the last 200 Myr (0.00115 and 0.00740 Myr(-1) lineage(-1), respectively). Finally, we show that increasing rates of gene loss reduce the impact of a genome-wide duplication event on the distribution of gene duplications through time.  相似文献   

18.
Polyploidy, the duplication of entire genomes, plays a major role in plant evolution. In allopolyploids, genome duplication is associated with hybridization between two or more divergent genomes. Successive hybridization and polyploidization events can build up species complexes of allopolyploids with complicated network-like histories, and the evolutionary history of many plant groups cannot be adequately represented by phylogenetic trees because of such reticulate events. The history of complex genome mergings within a high-polyploid species complex in the genus Cerastium (Caryophyllaceae) is here untangled by the use of a network algorithm and noncoding sequences of a low-copy number gene. The resulting network illustrates how hybridization and polyploidization have acted as key evolutionary processes in creating a plant group where high-level allopolyploids clearly outnumber extant parental genomes.  相似文献   

19.
Owing to their phylogenetic position, cartilaginous fishes (sharks, rays, skates, and chimaeras) provide a critical reference for our understanding of vertebrate genome evolution. The relatively small genome of the elephant shark, Callorhinchus milii, a chimaera, makes it an attractive model cartilaginous fish genome for whole-genome sequencing and comparative analysis. Here, the authors describe survey sequencing (1.4× coverage) and comparative analysis of the elephant shark genome, one of the first cartilaginous fish genomes to be sequenced to this depth. Repetitive sequences, represented mainly by a novel family of short interspersed element–like and long interspersed element–like sequences, account for about 28% of the elephant shark genome. Fragments of approximately 15,000 elephant shark genes reveal specific examples of genes that have been lost differentially during the evolution of tetrapod and teleost fish lineages. Interestingly, the degree of conserved synteny and conserved sequences between the human and elephant shark genomes are higher than that between human and teleost fish genomes. Elephant shark contains putative four Hox clusters indicating that, unlike teleost fish genomes, the elephant shark genome has not experienced an additional whole-genome duplication. These findings underscore the importance of the elephant shark as a critical reference vertebrate genome for comparative analysis of the human and other vertebrate genomes. This study also demonstrates that a survey-sequencing approach can be applied productively for comparative analysis of distantly related vertebrate genomes.  相似文献   

20.
Conserved synteny––the sharing of at least one orthologous gene by a pair of chromosomes from two species––can, in the strictest sense, be viewed as sequence conservation between chromosomes of two related species, irrespective of whether coding or non-coding sequence is examined. The recent sequencing of multiple vertebrate genomes indicates that certain chromosomal segments of considerable size are conserved in gene order as well as underlying non-coding sequence across all vertebrates. Some of these segments lost genes or non-coding sequence and/or underwent breakage only in teleost genomes, presumably because evolutionary pressure acting on these regions to remain intact were relaxed after an additional round of whole genome duplication. Random reporter insertions into zebrafish chromosomes combined with computational genome-wide analysis indicate that large chromosomal areas of multiple genes contain long-range regulatory elements, which act on their target genes from several gene distances away. In addition, computational breakpoint analyses suggest that recurrent evolutionary breaks are found in “fragile regions” or “hotspots”, outside of the conserved blocks of synteny. These findings cannot be accommodated by the random breakage model and suggest that this view of genome and chromosomal evolution requires substantial reassessment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号