首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During the development of multicellular animals, cell proliferation must be precisely controlled, as deregulated proliferation can lead to overgrowth and cancer. In addition, proliferation must be tightly integrated with pattern formation and differentiation to generate the required number of cells in the right organs, and at the right time. All major signaling pathways employed during embryogenesis have been implicated in cell cycle regulation, indicating that no single pathway has been dedicated to this task. Also, the precise role of a particular signaling pathway in regulating proliferation is highly dependent on the cellular context, and may have opposite effects on cell-cycle progression in different cells and tissues. The Hedgehog (Hh) family of signaling proteins is known to control both differentiation and proliferation during development. So far, studies addressing the effect of Hh signaling on proliferation have shown it to have a stimulatory effect on cell-cycle progression. Here we review several recent studies indicating that Hh signaling can also have the opposite effect, directing cell-cycle exit in a number of cell types in vertebrate and in invertebrate embryos.  相似文献   

2.
3.
4.
The formation of vascular structures requires precisely controlled proliferation of endothelial cells (ECs), which occurs through strict regulation of the cell cycle. However, the mechanism by which EC proliferation is coordinated during vascular formation remains largely unknown, since a method of analyzing cell-cycle progression of ECs in living animals has been lacking. Thus, we devised a novel system allowing the cell-cycle progression of ECs to be visualized in vivo. To achieve this aim, we generated a transgenic zebrafish line that expresses zFucci (zebrafish fluorescent ubiquitination-based cell cycle indicator) specifically in ECs (an EC-zFucci Tg line). We first assessed whether this system works by labeling the S phase ECs with EdU, then performing time-lapse imaging analyses and, finally, examining the effects of cell-cycle inhibitors. Employing the EC-zFucci Tg line, we analyzed the cell-cycle progression of ECs during vascular development in different regions and at different time points and found that ECs proliferate actively in the developing vasculature. The proliferation of ECs also contributes to the elongation of newly formed blood vessels. While ECs divide during elongation in intersegmental vessels, ECs proliferate in the primordial hindbrain channel to serve as an EC reservoir and migrate into basilar and central arteries, thereby contributing to new blood vessel formation. Furthermore, while EC proliferation is not essential for the formation of the basic framework structures of intersegmental and caudal vessels, it appears to be required for full maturation of these vessels. In addition, venous ECs mainly proliferate in the late stage of vascular development, whereas arterial ECs become quiescent at this stage. Thus, we anticipate that the EC-zFucci Tg line can serve as a tool for detailed studies of the proliferation of ECs in various forms of vascular development in vivo.  相似文献   

5.
6.
Plant cell division occurs mainly in developing tissues and appears to be highly regulated in both space and time. Recently, genetic and molecular analyses have been able to dissect the function of cell proliferation in the processes of growth and development. Mutant studies have shown that plants have a compensatory mechanism whereby increased cell expansion can partially cover for defects in proliferation. Ectopic expression of developmental and cell-cycle regulators has indicated how growth rate is controlled at the molecular level in meristems and lateral organs.  相似文献   

7.
8.
Knockout studies have shown that the polycomb gene Bmi-1 is important for postnatal, but not embryonic, neural stem cell (NSC) self-renewal and have identified the cell-cycle inhibitors p16/p19 as molecular targets. Here, using lentiviral-delivered shRNAs in vitro and in vivo, we determined that Bmi-1 is also important for NSC self-renewal in the embryo. We found that neural progenitors depend increasingly on Bmi-1 for proliferation as development proceeds from embryonic through adult stages. Acute shRNA-mediated Bmi-1 reduction causes defects in embryonic and adult NSC proliferation and self-renewal that, unexpectedly, are mediated by a different cell-cycle inhibitor, p21. Gene array analyses revealed developmental differences in Bmi-1-controlled expression of genes in the p21-Rb cell cycle regulatory pathway. Our data therefore implicate p21 as an important Bmi-1 target in NSCs, potentially with stage-related differences. Understanding stage-related mechanisms underlying NSC self-renewal has important implications for development of stem cell-based therapies.  相似文献   

9.
N-Myc is a member of the myc family of proto-oncogenes involved in initiation and progression of tumors. While c-MYC, the most characterized member of the family, is well known for its role in cellular proliferation and apoptosis, the function of N-MYC in differentiation and proliferation remains unclear. N-Myc mutant mice present a phenotype more consistent with a role of N-MYC protein in proliferation of precursor populations than in differentiation per se. Recent studies have also shown that N-MYC can enhance apoptosis and shorten the G1 phase of the cell cycle. However, the role of N-MYC in instigating cell-cycle progression has not been clearly demonstrated. Here, we demonstrate that overexpression of N-myc or activation of inducible N-MYC proteins is sufficient to induce apoptosis in serum-starved fibroblast cells, an effect that can be counteracted by overexpression of Bcl-2. Moreover, N-MYC can induce the reentry of quiescent cells into the cell cycle even in the absence of external stimuli. These results indicate that N-MYC and c-MYC share many properties, supporting the model that MYC-specific roles during embryonic development are mediated, at least in part, via their specific profile of expression rather than by their different protein functions.  相似文献   

10.
11.
The development of multicellular organisms relies on the temporal and spatial control of cell proliferation and cell growth. The relationship between cell-cycle progression and development is complex and characterized by mutual dependencies. On the level of the individual cell, this interrelationship has implications for pattern formation and cell morphogenesis. On a supercellular level, this interrelationship affects meristem function and organ growth. Often, developmental signals not only direct cell-cycle progression but also set the frame for cell-cycle regulation by determining cell-type-specific cell-cycle modes. In other cases, however, cell-cycle progression appears to be required for the further differentiation of some cell types. There are also examples in which cell cycle and differentiation seem to be controlled at the same level and progress rather independently from each other or are linked by the same regulator or pathway. Furthermore, different relationships between cell cycle and differentiation can be combined in a succession of events during development, leading to complex developmental programs.  相似文献   

12.
13.
Plant genome projects have revealed that both the cell-cycle components and the overall cell-cycle architecture are highly evolutionarily conserved. In addition to the temporal and spatial regulation of cell-cycle progression in individual cells, multicellularity has imposed extra layers of complexity that impinge on the balance of cell proliferation and growth, differentiation and organogenesis. In contrast to animals, organogenesis in plants is a postembryonic and continuous process. Differentiated plant cells can revert to a pluripotent state, proliferate and transdifferentiate. This unique potential is strikingly illustrated by the ability of certain cells to produce a mass of undifferentiated cells or a fully totipotent embryo, which can regenerate mature plants. Conversely, plant cells are highly resistant to oncogenic transformation. This review discusses the role that cell-cycle regulators may have at the interface between cell division and differentiation, and in the context of the high plasticity of plant cells.  相似文献   

14.
Cell-cycle control: POLO-like kinases join the outer circle   总被引:1,自引:0,他引:1  
Named after the polo gene of Drosophila, POLO-like kinases (PLKs) constitute a novel, evolutionarily conserved family of essential cell-cycle regulators. As emphasized in this review, recent studies identify important roles for vertebrate PLKs at the onset of mitosis: Plx1, a Xenopus PLK, has been implicated in the activation of Cdc25 phosphatase (and hence the activation of Cdc2), while human Plk1 is required for the proper maturation of the poles of mitotic spindles. These studies suggest a major role for Plk1/Plx1 in coordinating spindle assembly with the activation of Cdc2-cyclin complexes, and they establish a direct link between PLKs and the core cell-cycle-regulatory machinery. Genetic and biochemical studies in yeasts and Drosophila point to additional roles for PLKs at later stages of mitosis. Finally, mammals express multiple PLKs, suggesting that different family members might function at distinct cell-cycle transitions, reminiscent of cyclin-dependent kinases.  相似文献   

15.
16.
The p53 family: same response, different signals?   总被引:12,自引:0,他引:12  
TP53, the gene that encodes p53, is a well-defined tumor suppressor gene that is frequently mutated in human cancers. Recently, two proteins homologous to p53, termed p73 and p63, were identified. Current data indicate that both p73 and p63, like p53, can induce cell-cycle arrest and apoptosis, suggesting that they might also be tumor suppressors. However, the physiological signals that can regulate p53, for example, DNA damage, have no effect on p73, as tested in several cell lines. Furthermore, the signaling pathways by which p73 (and possibly p63) induces cell-cycle arrest and apoptosis appear to be similar to those of p53, but also have important differences. Thus, the p53 family proteins are closely related but might have distinct physiological functions.  相似文献   

17.
18.
From invertebrates to mammals, cell-cycle progression during an asymmetric cell division is accompanied by precisely timed redistribution of cell-fate determinants so that they segregate asymmetrically to enable the two daughter cells to choose different fates. Interestingly, studies on how cell fates are specified in such divisions reveal that the same fate determinants can be reiteratively used to specify a variety of cell types through multiple rounds of cell divisions or to exert seemingly contradictory effects on cell proliferation and differentiation. Here I summarize the molecular mechanisms governing asymmetric cell division and review recent findings pointing to a novel mechanism for coupling intracellular signaling and cell-cycle progression. This mechanism uses changes in the morphology, subcellular distribution, and molecular composition of cellular organelles like the Golgi apparatus and centrosomes, which not only accompany the progression of cell cycle to activate but also temporally constrain the activity of fate determinants during asymmetric cell divisions.  相似文献   

19.
Development of therapies to treat visual system dystrophies resulting from the degeneration of rod and cone photoreceptors may directly benefit from studies of animal models, such as the zebrafish, that display continuous retinal neurogenesis and the capacity for injury-induced regeneration. Previous studies of retinal regeneration in fish have been conducted on adult animals and have relied on methods that cause acute damage to both rods and cones, as well as other retinal cell types. We report here the use of a genetic approach to study progenitor cell responses to photoreceptor degeneration in the larval and adult zebrafish retina. We have compared the responses to selective rod or cone degeneration using, respectively, the XOPS-mCFP transgenic line and zebrafish with a null mutation in the pde6c gene. Notably, rod degeneration induces increased proliferation of progenitors in the outer nuclear layer (ONL) and is not associated with proliferation or reactive gliosis in the inner nuclear layer (INL). Molecular characterization of the rod progenitor cells demonstrated that they are committed to the rod photoreceptor fate while they are still mitotic. In contrast, cone degeneration induces both Müller cell proliferation and reactive gliosis, with little change in proliferation in the ONL. We found that in both lines, proliferative responses to photoreceptor degeneration can be observed as 7 days post fertilization (dpf). These two genetic models therefore offer new opportunities for investigating the molecular mechanisms of selective degeneration and regeneration of rods and cones.  相似文献   

20.
Rhythms in human gastrointestinal mucosa and skin   总被引:11,自引:0,他引:11  
Rhythmicity in cell proliferation is well established in the gastrointestinal tract and skin, both in rodents and humans. This is the basis for studies on the timing of both chemotherapy and radiotherapy. More recently, circadian rhythm studies of cell-cycle proteins have confirmed earlier findings based on thymidine labeling and flow cytometry. The genetic control of circadian rhythms has been elucidated recently and a possible connection between the circadian clock and the timing of cell-cycle events has been suggested. The data for gastrointestinal mucosa and skin are reviewed and the potential clinical implications of these results are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号