首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemokine receptors are members of the G protein-coupled receptor (GPCR) family. CCR5 and CXCR4 act as co-receptors for human immunodeficiency virus (HIV) and several efforts have been made to develop ligands to inhibit HIV infection by blocking those receptors. Removal of chemokine receptors from the cell surface using polymorphisms or other means confers some levels of immunity against HIV infection. Up to now, very limited success has been obtained using ligand therapies so we explored potential avenues to regulate chemokine receptor expression at the plasma membrane. We identified a molecular chaperone, DRiP78, that interacts with both CXCR4 and CCR5, but not the heterodimer formed by these receptors. We further characterized the effects of DRiP78 on CCR5 function. We show that the molecular chaperone inhibits CCR5 localization to the plasma membrane. We identified the interaction region on the receptor, the F(x)6LL motif, and show that upon mutation of this motif the chaperone cannot interact with the receptor. We also show that DRiP78 is involved in the assembly of CCR5 chemokine signaling complex as a homodimer, as well as with the Gαi protein. Finally, modulation of DRiP78 levels will affect receptor functions, such as cell migration in cells that endogenously express CCR5. Our results demonstrate that modulation of the functions of a chaperone can affect signal transduction at the cell surface.  相似文献   

2.
Although homodimerization has been demonstrated for a large number of G protein-coupled receptors (GPCRs), no general role has been attributed to this process. Because it is known that oligomerization plays a key role in the quality control and endoplasmic reticulum (ER) export of many proteins, we sought to determine if homodimerization could play such a role in GPCR biogenesis. Using the beta2-adrenergic receptor (beta2AR) as a model, cell fractionation studies revealed that receptor homodimerization is an event occurring as early as the ER. Supporting the hypothesis that receptor homodimerization is involved in ER processing, beta2AR mutants lacking an ER-export motif or harboring a heterologous ER-retention signal dimerized with the wild-type receptor and inhibited its trafficking to the cell surface. Finally, in addition to inhibiting receptor dimerization, disruption of the putative dimerization motif, 276GXXXGXXXL284, prevented normal trafficking of the receptor to the plasma membrane. Taken together, these data indicate that beta2AR homodimerization plays an important role in ER export and cell surface targeting.  相似文献   

3.
Recent studies have demonstrated that cargo exit from the endoplasmic reticulum (ER) may be directed by ER export motifs recognized by components of the coat protein II (COPII) vesicles. However, little is known about ER export motifs and vesicle targeting of the G protein-coupled receptor (GPCR) superfamily. Here, we have demonstrated that a triple Arg (3R) motif in the third intracellular loop functions as a novel ER export signal for α(2B)-adrenergic receptor (α(2B)-AR). The 3R motif mediates α(2B)-AR interaction with Sec24C/D and modulates ER exit, cell surface transport and function of α(2B)-AR. Furthermore, export function of the 3R motif is independent of its position within α(2B)-AR and can be conferred to CD8 glycoprotein. These data provide the first evidence implicating that export of GPCRs is controlled by code-directed interactions with selective components of the COPII transport machinery.  相似文献   

4.
Some secretory proteins leave the endoplasmic reticulum (ER) by a receptor-mediated cargo capture mechanism, but the signals required for the cargo-receptor interaction are largely unknown. Here, we describe a novel targeting motif that is composed of a high-mannose type oligosaccharide intimately associated with a surface-exposed peptide beta-hairpin loop. The motif accounts for lectin ERGIC-53-assisted ER-export of the lyososomal enzyme procathepsin Z. The second oligosaccharide chain of procathepsin Z exhibits no binding activity for ERGIC-53, illustrating the selective lectin properties of ERGIC-53. Our data suggest that the conformation-based motif is only present in fully folded procathepsin Z and that its recognition by ERGIC-53 reflects a quality control mechanism that acts complementary to the primary folding machinery in the ER. A similar oligosaccharide/beta-hairpin loop structure is present in cathepsin C, another cargo of ERGIC-53, suggesting the general nature of this ER-exit signal. To our knowledge this is the first documentation of an ER-exit signal in soluble cargo in conjunction with its decoding by a transport receptor.  相似文献   

5.
The anterograde trafficking of GPCR has been described as a tightly controlled process involving specific amino acid sequences that mediate the receptor transport. In this study, we investigated whether the cell surface delivery of the adiponectin receptor 1, a newly identified class of heptahelix receptors different from G protein-coupled receptors, is regulated. Sequential N-terminal deletion revealed that the export of the AdipoR1 from the endoplasmic reticulum (ER) is controlled by distinct parts of the receptor N-terminus. Strong evidence is provided that the ER exit is mediated by two specific sequences, a F(X)(3)F(X)(3)F and a D(X)(3)LL motif. Disruption of these motifs led to a substantial accumulation of the AdipoR1 in the ER. Mutation of similar motifs in the AdipoR1 C-terminus did not result in aberrant receptor localization, suggesting that these motifs are sequence and position specific to the AdipoR1 N-terminus. Further analysis of the regulation mechanism identified an interaction with the chaperone BiP and additionally, strong evidence is provided that both motifs exert different biological function in the AdipoR1 ER export. In conclusion, our data demonstrate that the receptor transport shares similar ER exit motifs although AdipoR are structurally different from GPCR. However, since even two specific sequences are identified, the anterograde trafficking of the AdipoR1 seems to be regulated in a more complex manner.  相似文献   

6.
Membrane trafficking is dictated by dynamic molecular interactions involving discrete determinants in the cargo proteins and the intracellular transport machineries. We have previously reported that cell surface expression of GPR15, a G protein-coupled receptor (GPCR) that serves as a co-receptor for HIV, is correlated with the mode III binding of 14-3-3 proteins to the receptor C terminus. Here we provide a mechanistic basis for the role of 14-3-3 in promoting the cell surface expression of GPR15. The Ala mutation of penultimate phospho-Ser (S359A) that abolishes 14-3-3 binding resulted in substantially reduced O-glycosylation and the cell surface expression of GPR15. The surface membrane protein CD8 fused with the C-terminal tail of GPR15(S359A) mutant was re-localized in the endoplasmic reticulum (ER). In the context of S359A mutation, the additional mutations in the upstream stretch of basic residues (RXR motif) restored O-glycosylation and the cell surface expression. The RXR motif was responsible for the interaction with coatomer protein I (COPI), which was inversely correlated with the 14-3-3 binding and cell surface expression. These results suggest that 14-3-3 binding promotes cell surface expression of GPR15 by releasing the receptor from ER retrieval/retention pathway that is mediated by the interaction of RXR motif and COPI. Moreover, 14-3-3 binding substantially increased the stability of GPR15 protein. Thus 14-3-3 proteins play multiple roles in biogenesis and trafficking of an HIV co-receptor GPR15 to control its cell surface density in response to the phosphorylation signal.  相似文献   

7.
G protein-coupled receptors (GPCRs) constitute a superfamily of cell-surface receptors which share a common topology of seven transmembrane domains and modulate a variety of cell functions through coupling to heterotrimeric G proteins by responding to a vast array of stimuli. The magnitude of cellular response elicited by a given signal is dictated by the level of GPCR expression at the plasma membrane, which is the balance of elaborately regulated endocytic and exocytic trafficking. This review will cover recent advances in understanding the molecular mechanism underlying anterograde transport of the newly synthesized GPCRs from the endoplasmic reticulum (ER) through the Golgi to the plasma membrane. We will focus on recently identified motifs involved in GPCR exit from the ER and the Golgi, GPCR folding in the ER and the rescue of misfolded receptors from within, GPCR-interacting proteins that modulate receptor cell-surface targeting, pathways that mediate GPCR traffic, and the functional role of export in controlling GPCR signaling.  相似文献   

8.
G protein-coupled receptors (GPCRs) constitute a superfamily of cell-surface receptors which share a common topology of seven transmembrane domains and modulate a variety of cell functions through coupling to heterotrimeric G proteins by responding to a vast array of stimuli. The magnitude of cellular response elicited by a given signal is dictated by the level of GPCR expression at the plasma membrane, which is the balance of elaborately regulated endocytic and exocytic trafficking. This review will cover recent advances in understanding the molecular mechanism underlying anterograde transport of the newly synthesized GPCRs from the endoplasmic reticulum (ER) through the Golgi to the plasma membrane. We will focus on recently identified motifs involved in GPCR exit from the ER and the Golgi, GPCR folding in the ER and the rescue of misfolded receptors from within, GPCR-interacting proteins that modulate receptor cell-surface targeting, pathways that mediate GPCR traffic, and the functional role of export in controlling GPCR signaling.  相似文献   

9.
The melanocortin 1 receptor (MC1R), a Gs protein‐coupled receptor (GPCR) expressed in melanocytes, is a major determinant of skin pigmentation and phototype. MC1R activation stimulates melanogenesis and increases the ratio of black, strongly photoprotective eumelanins to reddish, poorly photoprotective pheomelanins. Several MC1R alleles are associated with red hair, fair skin, increased sensitivity to ultraviolet radiation (the RHC phenotype) and increased skin cancer risk. Three highly penetrant RHC variants, R151C, R160W, and D294H are loss‐of‐function MC1R mutants with altered cell surface expression. In this study, we show that forward trafficking was normal for D294H. Conversely, export traffic was impaired for R151C, which accumulated in the endoplasmic reticulum (ER), and for R160W, which was enriched in the cis‐Golgi. This is the first report of steady‐state retention in a post‐ER secretory compartment of a GPCR mutant found in the human population. Residues R151 and R160 are located in the MC1R second intracellular loop (il2). Two other mutations in il2, T157A preventing T157 phosphorylation and R162P disrupting a 160RARR163 motif, also caused intracellular retention. Moreover, T157 was phosphorylated in wild‐type MC1R and a T157D mutation mimicking constitutive phosphorylation allowed normal traffic, and rescued the retention phenotype of R160W and R162P. Therefore, MC1R export is likely regulated by T157 phosphorylation and the 160RARR163 arginine‐based motif functions as an ER retrieval signal. These elements are conserved in mammalian MC1Rs and in all five types of human melanocortin receptors. Thus, members of this GPCR subfamily might share common mechanisms for regulation of plasma membrane expression. J. Cell. Physiol. 220: 640–654, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
Re-uptake of gamma-aminobutyric acid (GABA) into presynaptic specializations is mediated by the GABA transporter 1 (GAT1), a member of the SLC6 gene family. Here, we show that a motif in the COOH terminus of GAT1 ((566)RL(567)), which is conserved in SLC6 family members, is a binding site for the COPII coat component Sec24D. We also identified residues in Sec24D ((733)DD(734)) that are required to support the interaction with GAT1 and two additional family members, i.e. the transporters for serotonin and dopamine. We used three strategies to prevent recruitment of Sec24D to GAT1: knock-down of Sec24D by RNA interference, overexpression of Sec24D-VN (replacement of (733)DD(734) by (733)VN(734)), and mutation of (566)RL(567) to (566)AS(567) (GAT1-RL/AS). In each instance, endoplasmic reticulum (ER) export of GAT1 was impaired: in the absence of Sec24D or upon coexpression of dominant negative Sec24D-VN, GAT1 failed to undergo concentrative ER export; GAT1-RL/AS also accumulated in the ER and exerted a dominant negative effect on cell surface targeting of wild type GAT1. Our observations show that concentrative ER-export is contingent on a direct interaction of GAT1 with Sec24D; this also provides a mechanistic explanation for the finding that oligomeric assembly of transporters is required for their ER export: transporter oligomerization supports efficient recruitment of COPII components.  相似文献   

11.
The D(3) dopamine receptor is endocytosed through a heterologous mechanism mediated by phorbol esters. Here, we show that following this endocytosis the D(3) dopamine receptors fail to recycle and are instead targeted for degradation through an interaction with the G protein-coupled receptor (GPCR)-associated sorting protein-1 (GASP-1). Furthermore, we identified a specific binding motif in the C terminus common to the D(3) and D(2) that confers GASP-1 binding. shRNA knockdown of GASP-1 delayed post-endocytic degradation of both the D(2) and D(3) dopamine receptors. In addition, mutation of the D(2) and D(3) receptor C termini to resemble the D(4), which does not interact with GASP-1, not only inhibited GASP-1 binding but slowed degradation after endocytosis. Conversely, mutation of the C terminus of the D(4) to resemble that of the D(2) and D(3) facilitated GASP-1 binding and promoted post-endocytic degradation of the mutant D(4) receptor. Thus, we have identified a motif that is both necessary and sufficient to promote GASP-1 binding and receptor degradation. In addition, these data demonstrated that GASP-1 can mediate post-endocytic degradation of dopamine receptors that have been endocytosed not only as a consequence of dopamine activation but also as a consequence of activation by phorbol esters.  相似文献   

12.
The targeting of various Rab proteins to different subcellular compartments appears to be determined by variable amino acid sequences located upstream from geranylgeranylated cysteine residues in the C-terminal tail. All nascent Rab proteins are prenylated by geranylgeranyltransferase II, which recognizes the Rab substrate only when it is bound to Rab escort protein (REP). After prenylation, REP remains associated with the modified Rab until it is delivered to the appropriate subcellular membrane. It remains unclear whether docking of the Rab with the correct membrane is solely a function of features contained within the prenylated Rab itself (with REP serving as a "passive" carrier) or whether REP actively participates in the targeting process. To address this issue, we took advantage of a mutation in the alpha2 helix of Rab1B (i.e. Y78D) that abolishes REP and GDI interaction without disrupting nucleotide binding or hydrolysis. These studies demonstrate that replacing the C-terminal GGCC residues of Rab1B(Y78D) with a CLLL motif permits this protein to be prenylated by geranylgeranyltransferase I but not II both in cell-free enzyme assays and in transfected cells. Subcellular fractionation and immunofluorescence studies reveal that the prenylated Rab1B(Y78D)CLLL, which remains deficient in REP and GDI association is, nonetheless, delivered to the Golgi and endoplasmic reticulum (ER) membranes. When the dominant-negative S22N mutation was inserted into Rab1B-CLLL, the resulting monoprenylated construct suppressed ER --> Golgi protein transport. However, when the Y78D mutation was added to the latter construct, its inhibitory effect on protein trafficking was lost despite the fact that it was localized to the ER/Golgi membrane. Therefore, protein interactions mediated by the alpha2 helical domain of Rab1B(S22N) appear to be essential for its functional interaction with components of the ER --> Golgi transport machinery.  相似文献   

13.
Heo J  Ja WW  Benzer S  Goddard WA 《Biochemistry》2008,47(48):12740-12749
Peptide inhibitors of Methuselah (Mth), a G protein-coupled receptor (GPCR), were reported that can extend the life span of Drosophila melanogaster. Mth is a class B GPCR, which is characterized by a large, N-terminal ectodomain that is often involved with ligand recognition. The crystal structure of the Mth ectodomain, which binds to the peptide inhibitors with high affinity, was previously determined. Here we report the predicted structures for RWR motif peptides in complex with the Mth ectodomain. We studied representatives of both Pro-class and Arg-class RWR motif peptides and identified ectodomain residues Asp139, Phe130, Asp127, and Asp78 as critical in ligand binding. To validate these structures, we predicted the effects of various ligand mutations on the structure and binding to Mth. The binding of five mutant peptides to Mth was characterized experimentally by surface plasmon resonance, revealing measured affinities that are consistent with predictions. The electron density map calculated from our MD structure compares well with the experimental map of a previously determined peptide/Mth crystal structure and could be useful in refining the current low-resolution data. The elucidation of the ligand binding site may be useful in analyzing likely binding sites in other class B GPCRs.  相似文献   

14.
G protein-coupled receptors (GPCRs) are a superfamily of cell-surface receptors that regulate a variety of cell functions by responding to a myriad of ligands. The magnitude of the response elicited by a ligand is dictated by the level of receptor available at the plasma membrane. GPCR expression levels at the cell surface are a balance of three highly regulated, dynamic intracellular trafficking processes, namely export, internalization and degradation. This review will cover recent advances in understanding the mechanism underlying GPCR export trafficking by focusing on specific motifs required for ER export and the role of the Ras-like Rab1 GTPase and glycosylation in regulating ER–Golgi-cell-surface transport. The manifestation of diseases due to the disruption of GPCR export is also discussed.  相似文献   

15.
Lectins of the early secretory pathway are involved in selective transport of newly synthesized glycoproteins from the endoplasmic reticulum (ER) to the ER-Golgi intermediate compartment (ERGIC). The most prominent cycling lectin is the mannose-binding type I membrane protein ERGIC-53 (ERGIC protein of 53 kDa), a marker for the ERGIC, which functions as a cargo receptor to facilitate export of an increasing number of glycoproteins with different characteristics from the ER. Two ERGIC-53-related proteins, VIP36 (vesicular integral membrane protein 36) and a novel ERGIC-53-like protein, ERGL, are also found in the early secretory pathway. ERGL may act as a regulator of ERGIC-53. Studies of ERGIC-53 continue to provide new insights into the organization and dynamics of the early secretory pathway. Analysis of the cycling of ERGIC-53 uncovered a complex interplay of trafficking signals and revealed novel cytoplasmic ER-export motifs that interact with COP-II coat proteins. These motifs are common to type I and polytopic membrane proteins including presenilin 1 and presenilin 2. The results support the notion that protein export from the ER is selective.  相似文献   

16.
We previously identified Sys1p as a high copy number suppressor of Ypt6 GTPase-deficient yeast mutants that are defective in endosome-to-Golgi transport. Here, we show that Sys1p is an integral membrane protein that resides on a post-endoplasmic reticulum (ER) organelle(s). Affinity studies with detergent- solubilized yeast proteins showed that the C-terminal 53 amino acid tail of Sys1p binds effectively to the cytoplasmic Sec23p-Sec24p COPII subcomplex. This binding required a di-acidic Asp-Leu-Glu (DXE) motif, previously shown to mediate efficient ER export of the vesicular stomatitis virus glycoprotein in mammalian cells. In Sys1p, a Glu-Leu-Glu (EXE) sequence could not substitute for the (DXE) motif. Mutations of the (DXE) sequence resulted in ER retention of approximately 30% of the protein at steady state, whereas addition of the Sys1p tail to an ER-resident membrane protein led to an intracellular redistribution of the chimeric protein. Our study demonstrates for the first time that, in yeast, a di-acidic sequence motif can act as a sorting signal for cargo selection during the formation of transport vesicles at the ER by direct binding to COPII component(s).  相似文献   

17.
Dimerization is a common property of G-protein-coupled receptors (GPCR). While the formation of GPCR dimers/oligomers has been reported to play important roles in regulating receptor expression, ligand binding, and second messenger activation, less is known about how and where GPCR dimerization occurs. The present study was performed to identify the precise cellular compartment in which class A GPCR dimer/oligomer biogenesis occurs. We addressed this issue using confocal microscopy and fluorescence resonance energy transfer (FRET) to monitor GPCR proximity within discrete intracellular compartments of intact living cells. Time-lapse confocal imaging was used to follow CFP- and YFP-tagged serotonin 5-HT2C receptors during biosynthesis in the endoplasmic reticulum (ER), trafficking through the Golgi apparatus and subsequent expression on the plasma membrane. Real-time monitoring of FRET between CFP- and YFP-tagged 5-HT2C receptors was performed by acceptor photobleaching within discrete regions of the ER, Golgi, and plasma membrane. The FRET signal was dependent on the ratio of CFP- to YFP-tagged 5-HT2C receptors expressed in each region and was independent of receptor expression level, as predicted for proteins in a non-random, clustered distribution. FRET efficiencies measured in the ER, Golgi, and plasma membrane were similar. These experiments provide direct evidence for homodimerization/oligomerization of class A GPCR in the ER and Golgi of intact living cells, and suggest that dimer/oligomer formation is a naturally occurring step in 5-HT2C receptor maturation and processing.  相似文献   

18.
Heterotrimeric G proteins play a central role in intracellular communication mediated by extracellular signals, and both Galpha and Gbetagamma subunits regulate effectors downstream of activated receptors. The particular constituents of the G protein heterotrimer affect both specificity and efficiency of signal transduction. However, little is known about mechanistic aspects of G protein assembly in the cell that would certainly contribute to formation of heterotrimers of specific composition. It was recently shown that phosducin-like protein (PhLP) modulated both Gbetagamma expression and subsequent signaling by chaperoning nascent Gbeta and facilitating heterodimer formation with Ggamma subunits (Lukov, G. L., Hu, T., McLaughlin, J. N., Hamm, H. E., and Willardson, B. M. (2005) EMBO J. 24, 1965-1975; Humrich, J., Bermel, C., Bunemann, M., Harmark, L., Frost, R., Quitterer, U., and Lohse, M. J. (2005) J. Biol. Chem. 280, 20042-20050). Here we demonstrate using a variety of techniques that DRiP78, an endoplasmic reticulum resident protein known to regulate the trafficking of several seven transmembrane receptors, interacts specifically with the Ggamma subunit but not Gbeta or Galpha subunits. Furthermore, we demonstrate that DRiP78 and the Gbeta subunit can compete for the Ggamma subunit. DRiP78 also protects Ggamma from degradation until a stable partner such as Gbeta is provided. Furthermore, DRiP78 interaction may represent a mechanism for assembly of specific Gbetagamma heterodimers, as selectivity was observed among Ggamma isoforms for interaction with DRiP78 depending on the presence of particular Gbeta subunits. Interestingly, we could detect an interaction between DRiP78 and PhLP, suggesting a role of DRiP78 in the assembly of Gbetagamma by linking Ggamma to PhLP.Gbeta complexes. Our results, therefore, suggest a role of DRiP78 as a chaperone in the assembly of Gbetagamma subunits of the G protein.  相似文献   

19.
Shindo S  Sakuma T  Negishi M  Squires J 《Steroids》2012,77(5):448-453
Estrogen receptor α (ERα) can be phosphorylated at various residues, one of which is serine 212 in the DNA binding domain. The majority of human nuclear receptors conserves, as a motif, this serine residue within their DNA binding domain. Among these nuclear receptors, phosphorylation of the corresponding threonine 38 in the nuclear receptor CAR is essential for determining its activity [9]. Here, we have investigated the role of phosphorylated serine 212 in the regulation of ERα activity by comparing it with serine 236, another potential phosphorylation site within the DNA binding domain, and demonstrated that phosphorylation of serine 212 confers upon ERα a distinct activity regulating gene expression in Huh-7 cells. In Western blot analysis, wild type ERα and mutants ERα S212A, ERα S212D, ERα S236A and ERα S236D were equally expressed in the nucleus, thus indicating that phosphorylation does not determine nuclear localization of ERα. ERα S212D, but not ERα S236D, retained its capability of activating an ERE-reporter gene in luciferase assays. Similar results were also obtained for human ERβ; the ERβ S176D mutant retained its trans-activation activity, but the ERβ S200D mutant did not. cDNA microarray and Ingenuity Pathway Analysis, employed on Huh-7 cells ectopically expressing either ERα S212A or ERα S212D, revealed that phosphorylation of serine 212 enabled ERα to regulate a unique set of genes and cellular functions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号