首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
任安芝  高玉葆  周芳  陈磊 《生态学报》2007,27(12):5433-5440
选取感染和未感染的黑麦草为材料,在田间盆栽条件下研究内生真菌感染对宿主植物抵抗磷胁迫方面的贡献。结果表明,土壤中缺磷或内生真菌感染对黑麦草地上部生长的影响不显著,但内生真菌感染对植株地下部生长和生理指标有明显影响。缺磷条件下,内生真菌感染有助于黑麦草地下部分的生长,表现在根系总长度更长,生物量更大;同时根中酚类物质和有机酸的含量也显著高于未感染植株,但因酚类物质和有机酸总量增加的同时并未伴随着二者浓度的增加,由此推测,内生真菌在改变宿主黑麦草根系代谢活动方面的贡献有限。此外,内生真菌感染显著提高了宿主植物的磷利用效率,这可能和缺磷条件下内生真菌感染植株具有更高的酸性磷酸酶活性有关。  相似文献   

2.
《Mycological Research》2006,110(5):601-611
The fungus Neotyphodium lolii grows in the intercellular spaces of perennial ryegrass as a mutualistic endosymbiont. One of the benefits it conveys to the plant is the production of alkaloids toxic to herbivores. We wanted to determine in planta expression patterns of the N. lolii 3-hydroxy-3-methylglutaryl-CoA reductase (HMG CoA reductase) gene, believed to be involved in the synthesis of two of these alkaloid toxins, lolitrem B and ergovaline. We transformed the N. lolii strain Lp19 with plasmids, in which DNA fragments upstream of the open reading frame of the N. lolii HMG CoA reductase gene controlled expression of the GUS (gusA; Escherichia coli β-glucuronidase) reporter gene. In exponentially growing cultures, the GUS gene was not expressed if the length of upstream sequence was less than 400 bp, and >1100 bp were required for maximum expression. When reintroduced into ryegrass plants, transformants often showed highly increased hyphal branching compared to the wild-type parent strain, although in culture their growth kinetics and morphology were indistinguishable from that of the wild-type. Deterioration of hyphae and the hypha–plant interface occurred and in one transformant reduced tillering (formation of new plants, referred to in agronomy as tillers) and death of infected plants. We found no evidence that these abnormalities were caused by interference of the construct with the function of the native gene, as judged by analysis of the site of integration of the promoter-GUS cassette, expression of the native gene and lolitrem B and ergovaline levels in infected plants. However, there was some correlation between GUS expression and the degree of hyphal branching, suggesting that high levels of β-glucuronidase may disturb the symbiotic interaction. Levels of another alkaloid, peramine, were also not significantly affected by transformation. In previous studies increased in planta branching of the endophyte has been shown to be associated with a severe reduction of alkaloid production. Our results show that a plant–endophyte association in which increased branching occurs is still able to produce alkaloids.  相似文献   

3.
Neotyphodium fungal endophytes form mutualistic symbiotic associations with many grasses of the subfamily Pooideae, including important forage and turfgrass species. This relationship provides a competitive advantage to the host plant by increasing abiotic/biotic stress tolerance, such as its resistance to drought, diseases, and insect pests. The insect deterrent effects of endophytes are now receiving attention in Japan, as insect pests growing in meadows are causing problems in adjacent rice paddies. One of the most serious problems is the kernel spotting of rice grains caused by the rice leaf bug, Trigonotylus caelestialium Kirkaldy (Heteroptera: Miridae), which reproduces on Lolium species grown as forage. To determine the potential of Neotyphodium endophytes to reduce the invasion of rice crops by T. caelestialium from adjacent Lolium crops, we carried out choice and no‐choice feeding tests using endophyte‐infected and endophyte‐free clonal perennial ryegrass (Lolium perenne L.) (Poaceae). Our experiments revealed that the presence of the Neotyphodium endophyte strongly deterred the feeding of both first‐instar larvae and adults of T. caelestialium. These results show the potential of Neotyphodium endophytes to reduce the number of T. caelestialium in forage fields and grasslands, and thus to reduce the damage to rice grains caused by this insect pest.  相似文献   

4.
Background and Aims Neotyphodium lolii is a fungal endophyteof perennial ryegrass (Lolium perenne), improving grass fitnessthrough production of bioactive alkaloids. Neotyphodium speciescan also affect growth and physiology of their host grasses(family Poaceae, sub-family Pooideae), but little is known aboutthe mechanisms. This study examined the effect of N. lolii onnet photosynthesis (Pn) and growth rates in ryegrass genotypesdiffering in endophyte concentration in all leaf tissues. • Methods Plants from two ryegrass genotypes, Nui D andNui UIV, infected with N. lolii (E+) differing approx. 2-foldin endophyte concentration or uninfected clones thereof (E–)were grown in a controlled environment. For each genotype xendophyte treatment, plant growth rates were assessed as tilleringand leaf extension rates, and the light response of Pn, darkrespiration and transpiration measured in leaves of young (30–45d old) and old (>90 d old) plants with a single-chamber openinfrared gas-exchange system. • Key Results Neotyphodium lolii affected CO2-limited ratesof Pn, which were approx. 17 % lower in E+ than E– plants(P < 0·05) in the young plants. Apparent photon yieldand dark respiration were unaffected by the endophyte (P >0·05). Neotyphodium lolii also decreased transpiration(P < 0·05), but only in complete darkness. There wereno endophyte effects on Pn in the old plants (P > 0·05).E+ plants grew faster immediately after replanting (P < 0·05),but had approx. 10 % lower growth rates during mid-log growth(P < 0·05) than E– plants, but there was noeffect on final plant biomass (P > 0·05). The endophyteeffects on Pn and growth tended to be more pronounced in NuiUIV, despite having a lower endophyte concentration than NuiD. • Conclusions Neotyphodium lolii affects CO2 fixation,but not light interception and photochemistry of Pn. The impactof N. lolii on plant growth and photosynthesis is independentof endophyte concentration in the plant, suggesting that theendophyte mycelium is not simply an energy drain to the plant.However, the endophyte effects on Pn and plant growth are stronglydependent on the plant growth phase.  相似文献   

5.
Perennial ryegrass plants collected from fields and Italian ryegrass plants grown from seed were selected for resistance to infection by ryegrass mosaic virus (RMV) by repeated manual inoculation. Two of 108 perennial ryegrass plants and one of 150 Italian ryegrass plants were symptomless after seven and nine inoculations respectively. These three plants were propagated vegetatively. Plants of the two perennial ryegrass clones showed no symptoms after further manual inoculations with the initial isolate of RMV, or with an inoculum from infected plants collected from several fields, or after inoculation by viruliferous mites. Electron microscopy and back tests indicated that the plants were virus free. Some plants of the selected Italian ryegrass clone became infected after a further inoculation with mites or sap, but fewer than similarly inoculated unselected plants.  相似文献   

6.
干旱胁迫下内生真菌感染对黑麦草叶内几种同工酶的影响   总被引:11,自引:0,他引:11  
任安芝  高玉葆  陈悦 《生态学报》2004,24(7):1323-1329
以内生真菌感染(endophyte-infected,EI)与不感染(endophyte-free,EF)的黑麦草(Lolium perenne L.)种子建立实验种群,分别对其施加长时间不同强度的干旱胁迫,通过比较黑麦草体内过氧化物酶(POD)、超氧化物歧化酶(SOD)、多酚氧化酶(PPO)活性及其同工酶谱的变化以探讨保护酶系统在内生真菌——植物共生体的抗旱性方面所作的贡献。研究结果表明,水分胁迫和内生真菌对黑麦草3种酶的影响不仅表现在总量上而且表现在同工酶的酶谱及各区带的酶活力上。就总酶活力而言,EI和EF植株中POD、SOD和PPO的活性均随着干旱胁迫强度的增加而增加,进一步将EI和EF植株的酶活力进行比较,发现与EF植株相比,EI植株中POD和PPO的活性相对较低,而SOD的活性相对较高。从同工酶的谱带数量和强弱来看,POD同工酶各区带活力均随干旱胁迫强度的增加而增加,EI植株叶片增加的幅度高于EF叶片,而且EI叶片在重度胁迫下出现了1条新带SOD同工酶各区带活力在EI叶片中有随干旱胁迫增加而增加的趋势,而在EF叶片中有些区带酶活力增强,有些区带酶活力减弱,且EI叶片在中度胁迫下出现了1条新带;PPO同工酶随干旱胁迫的增强,EI和EF叶片均表现为有些区带酶活力增强,有些区带酶活力减弱。总之,内生真菌的感染虽然没有显著提高宿主植物黑麦草POD、SOD和PPO的活性,但使宿主黑麦草对干旱胁迫的反应更为迅速,其中既包括POD、SOD等酶活力的迅速升高,也包括新酶带的产生。  相似文献   

7.
Many cool-season grasses harbor fungal endophytes in the genus Neotyphodium, which enhance host fitness, but some also produce metabolites--such as ergovaline--believed to cause livestock toxicoses. In Claviceps species the first step in ergot alkaloid biosynthesis is thought to be dimethylallyltryptophan (DMAT) synthase, encoded by dmaW, previously cloned from Claviceps fusiformis. Here we report the cloning and characterization of dmaW from Neotyphodium sp. isolate Lp1, an endophyte of perennial ryegrass (Lolium perenne). The gene was then disrupted, and the mutant failed to produce any detectable ergovaline or simpler ergot and clavine alkaloids. The disruption was complemented with the C. fusiformis gene, which restored ergovaline production. Thus, the biosynthetic role of DMAT synthase was confirmed, and a mutant was generated for future studies of the ecological and agricultural importance of ergot alkaloids in endophytes of grasses.  相似文献   

8.
9.
Superoxide dismutases (EC 1.15.1.1) in vascular plants representing different evolutionary levels were characterized using polyacrylamide gel electrophoresis. The three forms of the enzyme were distinguished from each other based on the following criteria: a) the Cu-Zn enzyme is sensitive to cyanide wherease the Fe and Mn enzymes are not; and b) the Cu-Zn and Fe enzymes are inhibited by H2O2 whereas the Mn enzyme is H2O2-resistant. Of the 43 plant families investigated, the Fe-containing superoxide dismutase was found in three families: Gingkoaceae, Nymphaceae, and Cruciferae.  相似文献   

10.
There are few reports in relation to the role of specific proteins in the mycorrhizal symbiosis. Among the changes in the protein expression as a consequence of the arbuscular mycorrhizal symbiosis, only one case related to changes in superoxide dismutase (SOD; EC 1.15.1.1) activity has been reported in the red clover-Glomus mosseae symbiosis.In this paper, the symbiotic system formed by a leguminous plant,Pisum sativum, and the fungusGlomus mosseae is studied in terms of protein patterns and SOD activity in both mycorrhizal and non-mycorrhizal roots. Our results show that among the differential polypeptides separated by SDS-PAGE, one with a molecular weight of 32.0 kDa, and a protein with an isoelectric point of pI 4.9 appeared strongly expressed in mycorrhizal roots. A partial purification of the related polypeptide could be achieved by DEAE-cellulose chromatography. A higher SOD activity was also detected in mycorrhizal pea roots, although both mycorrhizal and non-mycorrhizal roots showed the same isoenzymatic pattern for SODs: two Mn-SODs (I and II) and two Cu,Zn-SODs (I and II) were detected, Cu,Zn-SOD I being the most abundant isozyme in both types of roots. A similar pattern of SOD isozymes (Mn-SODs I and II, and Cu,Zn-SODs I and II) was also found in nodules of mycorrhizal and non-mycorrhizal pea roots. However, in nodules Mn-SOD II was the main isozyme. The bacterial nature of this isozyme is postulated in this report.Dr. Justo Arines died on the 15th November, 1993 in Dijon (France), while he was attending a molecular biology course on mycorrhizas.  相似文献   

11.
12.
The aim of the study was to evaluate the antioxidative Cu/Zn-SOD (superoxide dismutase) response to obesity-related stress in obese children compared to a similar-aged control group. Forty-eight exogenic obese children and 11 healthy children were compared for red cell Cu/Zn-SOD, glucose, and lipid profiles and the relations between the were investigated. Antioxidant response as Cu/Zn-SOD was significantly higher in the obese group (p<0.05). Although glucose and lipid levels were statistically higher in the obese group, a certain relation with the SOD level was not established in childhood. This is the first study showing the oxidative stress caused by obesity and related antioxidative response even in the childhood period. Interventions, including diet modifications, should be kept in mind to diminish the obesity-related oxidative stress from the childhood period.  相似文献   

13.
14.
Mature rabbit spermatozoa from the cauda epididymidis suspended in potassium Tris phosphate buffer at 24 degrees C produced O2.-, as measured by reduction of acetylated ferricytochrome c, with an intrinsic rate of 0.20 nmol/min per 10(8) cells. This rate increased to 1.80 nmol/min per 10(8) cells in the presence of 10 mM cyanide. These spermatozoa contain 2.8 units per 10(8) cells of superoxide dismutase activity, 95% of which is sensitive, and 5% of which is insensitive, to cyanide inhibition. These activities correspond to the cytosolic Cu-Zn form and the mitochondrial Mn form of the dismutase, respectively. Only the cyanide-sensitive form is released from the sperm on hypo-osmotic treatment or sonication. Hypo-osmotically treated rabbit epididymal spermatozoa produced O2.- with an intrinsic rate of 0.24 nmol/min per 10(8) cells, which increased to 0.58 nmol/min per 10(8) cells in the presence of 10 mM cyanide. Both intact and hypo-osmotically treated cells react with O2.- in a second order reaction as inferred from the hyperbolic dependence on cell concentration of O2.- production rate in both the absence and presence of cyanide. The second order rate constant for this reaction with intact cells, kS, was calculated to be 22.9 X 10(-8) (cells/ml)-1 min-1 in its absence. For hypo-osmotically treated cells, the values of kS were 10.8 X 10(-8) (cells/ml)-1 min-1 and 8.2 X 10(-8) (cells/ml) -1 min-1, respectively. Since hypo-osmotically treated cells have lost much of their plasma membrane, the lower value of kS for the treated cells implies that this membrane is one site of reaction of O2.- with the cells. The increase in kS in the presence of cyanide, which inhibits superoxide dismutase and so increases O2.- production, suggests that the cells become more reactive with O2.- as its production rate increase, as would be expected for the occurrence of radical chain oxidation. This in turn suggests that superoxide dismutase plays a major role in protecting rabbit sperm against damage from lipid peroxidation.  相似文献   

15.
Total NAD kinase activity remained unaltered in the drought non-adapted wheat leaves under water deficit, but gradually decreased with water deficit in the adapted ones. The share of the calmodulin-dependent enzyme was significantly higher in the drought-hardened than in non-hardened plants; however, under severe water deficit the activity of the enzyme dropped by half. It seems, therefore, that NAD kinase activity does not limit phosphorylation of NAD in dehydrated plant tissues.  相似文献   

16.
The intracellular redox state is of importance for cell growth, differentiation, and apoptosis through reactive oxygen species (ROS) functioning as metabolic fine-tuner. Optimal levels of polyamines are necessary for growth, differentiation, and apoptotic cell death while they also protect cell from ROS accumulation. We have carried out studies to find out the interrelation between these two distant metabolic pathways. For that purpose, the glucocorticoid-triggered programmed cell death of rat thymocytes has been used. Our data confirm that SOD activity (which testifies both to the level of ROS generation and antioxidative defense state) changes in response to programmed cell death conditions and to alteration of intracellular polyamines level. Thymocytes death induced by dexamethasone is partially mediated by polyamines content. Our data prove that one of the molecular mechanisms of thymocytes population resistance after dexamethasone treatment is an enhanced level of antioxidant defense. It is evident that in dexamethasone-treated rat thymocytes polyamines modulate signal transduction processes to apoptosis development via changes in cellular redox status.  相似文献   

17.

Background and aims

Saline soils limit plant production worldwide through osmotic stress, specific-ion toxicities, and nutritional imbalances.

Methods

The ability of Ca2+ and K+ to alleviate toxicities of Na+ and Mg2+ was examined using 89 treatments in short-term (48 h) solution culture studies for cowpea (Vigna unguiculata (L.) Walp.) roots. Root elongation was related to ionic activities at the outer surface of the root plasma membrane.

Results

The addition of K+ was found to alleviate the toxic effects of Na+, and supplemental Ca2+ improved growth further in these partially-alleviated solutions where K+ was present. Therefore, Na+ appears to interfere with K+ metabolism, and Ca2+ reduces this interference. Interestingly, the ability of Ca2+ to improve K-alleviation of Na+ toxicity is non-specific, with Mg2+ having a similar effect. In contrast, the addition of Ca2+ to Na-toxic solutions in the absence of K+ did not improve growth, suggesting that Ca2+ does not directly reduce Na+ toxicity in these short-term studies (for example, by reducing Na+ uptake) when supplied at non-deficient levels. Finally, K+ did not alleviate Mg2+ toxicity, suggesting that Mg2+ is toxic by a different mechanism to Na+.

Conclusions

Examination of how the toxic effects of salinity are alleviated provides clues as to the underlying mechanisms by which growth is reduced.  相似文献   

18.
AIMS: Staphylococcus carnosus, used as starter culture in fermented meat products, decreases the level of volatiles arising from lipid oxidation. To analyse its antioxidant capacities, catalase and superoxide dismutase (SOD) were characterized. METHODS AND RESULTS: Catalase and SOD activities were measured with spectrophotometric methods and visualized on non-denaturing polyacrylamide gels. The corresponding sod gene was identified by PCR. Southern hybridizations and enzymatic analyses showed that there was a single catalase and a single SOD in Staph. carnosus 833 strain. The gene encoding the Staph. carnosus SOD was found to encode a protein closely related to SOD requiring manganese. Catalase and SOD levels increased in mid-log phase. Only catalase was induced by oxygen, nitrate or nitrite while glucose induced neither enzyme. Metal ion limitation increased catalase and decreased SOD activities. CONCLUSION: Staph. carnosus synthesizes both enzymes in conditions encountered in sausage manufacturing. These results could explain the antioxidant properties of Staph. carnosus starter culture. SIGNIFICANCE AND IMPACT OF THE STUDY: The knowledge of the antioxidant properties of Staphylococci will allow a more rational use of these starters in meat fermented products.  相似文献   

19.
20.
The effect of temperature (from 1 to 37 °C) on in vitro effective superoxide dismutase (SOD) activity of several organisms was investigated and compared. Antarctic plankton, cultures of the alga Nannochloropsis sp., and the cyanobacterium Synechococcus strain WH 7803, and pure bovine erythrocyte SOD was studied. It was found that in all cases SOD activity increased with decreasing temperature within the temperature range assayed, in the Polar as well as the temperate plankton cells. This behavior of SOD is counterintuitive in terms of our experience when looking at enzyme activity or any other chemical reaction. We suggest a theoretical explanation for this apparently odd behavior. The advantage of such behavior is that the same amount of antioxidant will act better under low temperatures when reactive oxygen species (ROS) increase. Moreover, this protective process would act in vivo at a faster pace than the ex novo enzyme synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号