共查询到20条相似文献,搜索用时 0 毫秒
1.
Scarselli M Bernini A Segoni C Molinari H Esposito G Lesk AM Laschi F Temussi P Niccolai N 《Journal of biomolecular NMR》1999,15(2):125-133
TEMPOL, the soluble spin-label 4-hydroxy-2,2,6,6-tetramethyl-piperidine-1-oxyl, has been used to determine the surface characteristics of tendamistat, a small protein with a well-characterised structure both in solution and in the crystal. A good correlation has been found between predicted regions of exposed protein surface and the intensity attenuations induced by the probe on 2D NMR TOCSY cross peaks of tendamistat in the paramagnetic water solution. All the high paramagnetic effects have been interpreted in terms of more efficient competition of TEMPOL with water molecules at some surface positions. The active site of tendamistat coincides with the largest surface patch accessible to the probe. A strong hydration of protein N and C termini can also be suggested by this structural approach, as these locations exhibit reduced paramagnetic perturbations. Provided that the solution structure is known, the use of this paramagnetic probe seems to be well suited to delineate the dynamic behaviour of the protein surface and, more generally, to gain relevant information about the molecular presentation processes. 相似文献
2.
Bernini A Venditti V Spiga O Ciutti A Prischi F Consonni R Zetta L Arosio I Fusi P Guagliardi A Niccolai N 《Biophysical chemistry》2008,137(2-3):71-75
Understanding how proteins are approached by surrounding molecules is fundamental to increase our knowledge of life at atomic resolution. Here, the surface accessibility of a multifunctional small protein, the archaeal protein Sso7d from Sulfolobus solfataricus, has been investigated by using TEMPOL and Gd(III)(DTPA-BMA) as paramagnetic probes. The DNA binding domain of Sso7d appears very accessible both to TEMPOL and Gd(III)(DTPA-BMA). Differences in paramagnetic attenuation profiles of (1)H-(15)N HSQC protein backbone amide correlations, observed in the presence of the latter paramagnetic probes, are consistent with the hydrogen bond acceptor capability of the N-oxyl moiety of TEMPOL to surface exposed Sso7d amide groups. By using the gadolinium complex as a paramagnetic probe a better agreement between Sso7d structural features and attenuation profile is achieved. It is interesting to note that the protein P-loop region, in spite of the high surface exposure predicted by the available protein structures, is not approached by TEMPOL and only partially by Gd(III)(DTPA-BMA). 相似文献
3.
Niccolai N Spiga O Bernini A Scarselli M Ciutti A Fiaschi I Chiellini S Molinari H Temussi PA 《Journal of molecular biology》2003,332(2):437-447
Understanding the mechanisms of the interaction between a protein surface and its outer molecular environment is of primary relevance for the rational design of new drugs and engineered proteins. Protein surface accessibility is emerging as a new dimension of Structural Biology, since NMR methods have been developed to follow how molecules, even those different from physiological ligands, preferentially approach specific regions of the protein surface. Hen egg-white lysozyme, a paradigmatic example of the state of the art of protein structure and dynamics, has been selected as a model system to study protein surface accessibility. Bound water and soluble spin-labels have been used to investigate the interaction of this enzyme, both free and bound to the inhibitor (NAG)(3), with its molecular environment. No tightly bound water molecules were found inside the enzyme active site, which, conversely, appeared as the most exposed to visits from the soluble paramagnetic probe TEMPOL. From the presented set of data, an integrated view of lysozyme surface accessibility towards water and TEMPOL molecules is obtained. 相似文献
4.
Electron paramagnetic resonance (EPR) spectroscopy was utilized to investigate the correlation between RNA structure and RNA internal dynamics in complexes of HIV-1 TAR RNA with small molecules. TAR RNAs containing single nitroxide spin-labels in the 2'-position of U23, U25, U38, or U40 were incubated with compounds known to inhibit TAR-Tat complex formation. The combined changes in nucleotide mobility at all four sites, as monitored by their EPR spectral width, yield a dynamic signature for each compound. The multicyclic dyes Hoechst 33258, DAPI, and berenil bind to TAR RNA in a similar manner and gave nearly identical signatures. Different signatures were obtained for the acridine derivative CGP 40336A and the aminoglycoside antibiotic neomycin, which bind to different regions of the RNA. The dynamic signature for guanidinoneomycin was remarkably similar to that obtained for argininamide and is evidence for guanidinoneomycin binding to the same site as arginine 52 of the Tat protein, rather than to the neomycin binding site. The data presented here show that the dynamic signatures provide strong insights into RNA structure and recognition and demonstrate the value of EPR spectroscopy for the investigation of small molecule binding to RNA. 相似文献
5.
Small molecule drugs have readily been developed against many proteins in the human proteome, but RNA has remained an elusive target for drug discovery. Increasingly, we see that RNA, and to a lesser extent DNA elements, show a persistent tertiary structure responsible for many diverse and complex cellular functions. In this digest, we have summarized recent advances in screening approaches for RNA targets and outlined the discovery of novel, drug-like small molecules against RNA targets from various classes and therapeutic areas. The link of structure, function, and small-molecule Druggability validates now for the first time that RNA can be the targets of therapeutic agents. 相似文献
6.
Given that many small molecules could bind to structured regions at sites that will not affect function, approaches that trigger degradation of RNA could provide a general way to affect biology. Indeed, targeted RNA degradation is an effective strategy to selectively and potently modulate biology. We describe several approaches to endow small molecules with the power to cleave RNAs. Central to these strategies is Inforna, which designs small molecules targeting RNA from human genome sequence. Inforna deduces the uniqueness of a druggable pocket, enables generation of hypotheses about functionality of the pocket, and defines on- and off-targets to drive compound optimization. RNA-binding compounds are then converted into cleavers that degrade the target directly or recruit an endogenous nuclease to do so. Cleaving compounds have significantly contributed to understanding and manipulating biological functions. Yet, there is much to be learned about how to affect human RNA biology with small molecules. 相似文献
7.
Joanna Sztuba-Solinska Gabriela Chavez-Calvillo Sabrina Elizabeth Cline 《Bioorganic & medicinal chemistry》2019,27(10):2149-2165
The increasing appreciation for the crucial roles of RNAs in infectious and non-infectious human diseases makes them attractive therapeutic targets. Coding and non-coding RNAs frequently fold into complex conformations which, if effectively targeted, offer opportunities to therapeutically modulate numerous cellular processes, including those linked to undruggable protein targets. Despite the considerable skepticism as to whether RNAs can be targeted with small molecule therapeutics, overwhelming evidence suggests the challenges we are currently facing are not outside the realm of possibility. In this review, we highlight the most recent advances in molecular techniques that have sparked a revolution in understanding the RNA structure-to-function relationship. We bring attention to the application of these modern techniques to identify druggable RNA targets and to assess small molecule binding specificity. Finally, we discuss novel screening methodologies that support RNA drug discovery and present examples of therapeutically valuable RNA targets. 相似文献
8.
9.
Hermann T 《Biopolymers》2003,70(1):4-18
Functional RNAs such as ribosomal RNA and structured domains of mRNA are targets for small molecule ligands that can act as modulators of the RNA biological activity. Natural ligands for RNA display a bewildering structural and chemical complexity that has yet to be matched by synthetic RNA binders. Comparison of natural and artificial ligands for RNA may help to direct future approaches to design and synthesize potent novel scaffolds for specific recognition of RNA targets. 相似文献
10.
Background
The cell cycle plays a key role in human health and disease, including development and cancer. The ability to easily and reversibly control the mammalian cell cycle could mean improved cellular reprogramming, better tools for studying cancer, more efficient gene therapy, and improved heterologous protein production for medical or industrial applications.Results
We engineered RNA-based control devices to provide specific and modular control of gene expression in response to exogenous inputs in living cells. Specifically, we identified key regulatory nodes that arrest U2-OS cells in the G0/1 or G2/M phases of the cycle. We then optimized the most promising key regulators and showed that, when these optimized regulators are placed under the control of a ribozyme switch, we can inducibly and reversibly arrest up to ~80 % of a cellular population in a chosen phase of the cell cycle. Characterization of the reliability of the final cell cycle controllers revealed that the G0/1 control device functions reproducibly over multiple experiments over several weeks.Conclusions
To our knowledge, this is the first time synthetic RNA devices have been used to control the mammalian cell cycle. This RNA platform represents a general class of synthetic biology tools for modular, dynamic, and multi-output control over mammalian cells.11.
12.
Correlation between chemical modification and surface accessibility in yeast phenylalanine transfer RNA 总被引:4,自引:0,他引:4
Chemical reactivities of the functional groups of yeast phenylalanine transfer RNA are compared with surface accessibilities of the groups calculated with various probe radii representing effective radii of the chemical reagents used. We observe 97% agreement with the hypothesis that the chemically modified bases are those with the greatest surface accessibility. This overall strong correlation supports the conclusion that base exposure in an important determinant of chemical modification in this polynucleotide. 相似文献
13.
14.
15.
Arhin F Bélanger O Ciblat S Dehbi M Delorme D Dietrich E Dixit D Lafontaine Y Lehoux D Liu J McKay GA Moeck G Reddy R Rose Y Srikumar R Tanaka KS Williams DM Gros P Pelletier J Parr TR Far AR 《Bioorganic & medicinal chemistry》2006,14(17):5812-5832
The RNA polymerase holoenzyme is a proven target for antibacterial agents. A high-throughput screening program based on this enzyme from Staphylococcus aureus had previously identified a 2-ureidothiophene-3-carboxylate as a low micromolar inhibitor. An investigation of the relationships between the structures of this class of compounds and their inhibitory- and antibacterial activities is described here, leading to a set of potent RNA polymerase inhibitors with antibacterial activity. Characterization of this bioactivity, including studies of the mechanism of action, is provided, highlighting the power of the reverse chemical genetics approach in providing tools to inhibit the bacterial RNA polymerase. 相似文献
16.
A new, simple method based on information theory is introduced to predict the solvent accessibility of amino acid residues in various states defined by their different thresholds. Prediction is achieved by the application of information obtained from a single amino acid position or pair-information for a window of seventeen amino acids around the desired residue. Results obtained by pairwise information values are better than results from single amino acids. This reinforces the effect of the local environment on the accessibility of amino acid residues. The prediction accuracy of this method in a jackknife test system for two and three states is better than 70 and 60 %, respectively. A comparison of the results with those reported by others involving the same data set also testifies to a better prediction accuracy in our case. 相似文献
17.
Global regulation by the small RNA-binding protein CsrA and the non-coding RNA molecule CsrB 总被引:28,自引:17,他引:11
Tony Romeo 《Molecular microbiology》1998,29(6):1321-1330
18.
Jessica L Childs-Disney Meilan Wu Alexei Pushechnikov Olga Aminova Matthew D Disney 《ACS chemical biology》2007,2(11):745-754
Herein, we report the development of a microarray platform to select RNA motif-ligand interactions that allows simultaneous screening of both RNA and chemical space. We used this platform to identify the RNA internal loops that bind 6'- N-5-hexynoate kanamycin A ( 1). Selected internal loops that bind 1 were studied in detail and commonly display an adenine across from a cytosine independent of the size of the loop. Additional preferences are also observed. For 3 x 3 nucleotide loops, there is a preference for purines, and for 2 x 2 nucleotide loops there is a preference for pyrimidines neighbored by an adenine across from a cytosine. This technique has several advantageous features for selecting RNA motif-ligand interactions: (1) higher affinity RNA motif-ligand interactions are identified by harvesting bound RNAs from lower ligand loadings; (2) bound RNAs are harvested from the array via gel extraction, mitigating kinetic biases in selections; and (3) multiple selections are completed on a single array surface. To further demonstrate that multiple selections can be completed in parallel on the same array surface, we selected the RNA internal loops from a 4096-member RNA internal loop library that bound a four-member aminoglycoside library. These experiments probed 16,384 (4 aminoglycoside x 4096-member RNA library) interactions in a single experiment. These studies allow for parallel screening of both chemical and RNA space to improve our understanding of RNA-ligand interactions. This information may facilitate the rational and modular design of small molecules targeting RNA. 相似文献
19.
The enzyme Dicer is central to the production of small silencing RNAs such as microRNAs (miRNAs) and small interfering RNAs (siRNAs). Like other insects, Drosophila melanogaster uses different Dicers to make siRNAs and miRNAs: Dicer-1 produces miRNAs from pre-miRNAs, whereas Dicer-2 generates siRNAs from long double-stranded RNA (dsRNA). How do the 2 Dicers achieve their substrate specificity? Here, we review recent findings that inorganic phosphate restricts the substrate specificity of Dicer-2 to long dsRNA. Inorganic phosphate inhibits Dicer-2 from binding and cleaving pre-miRNAs, without affecting the processing of long dsRNA. Crystal structures of a fragment of human Dicer in complex with an RNA duplex identify a phosphate-binding pocket that recognizes both the 5′-monophosphate of a substrate RNA and inorganic phosphate. We propose that inorganic phosphate occupies the phosphate-binding pocket in the fly Dicer-2, blocking binding of pre-miRNA and restricting pre-miRNA processing to Dicer-1. Thus, a small molecule can alter the substrate specificity of a nucleic acid-processing enzyme. 相似文献
20.
Razzaghi-Asl N Ebadi A Edraki N Mehdipour A Shahabipour S Miri R 《Journal of molecular modeling》2012,18(10):4567-4576
Computational evaluation of ligand-receptor binding via docking strategy is a well established approach in structure-based drug design. This technique has been applied frequently in developing molecules of biological interest. However, any procedure would require an optimization set up to be more efficient, economic and time-saving. Advantages of modern statistical optimization methods over conventional one-factor-at-a-time studies have been well revealed. The optimization by experimental design provides a combination of factor levels simultaneously satisfying the requirements considered for each of the responses and factors. In this study, response surface method was applied to optimize the prominent factors (number of genetic algorithm runs, population size, maximum number of evaluations, torsion degrees for ligand and number of rotatable bonds in ligand) in AutoDock4.2-based binding study of small molecule β-secretase inhibitors as anti-alzheimer agents. Results revealed that a number of rotatable bonds in ligand and maximum number of docking evaluations were determinant variables affecting docking outputs. The interference between torsion degrees for ligand and number of genetic algorithm runs for docking procedure was found to be the significant interaction term in our model. Optimized docking outputs exhibited a high correlation with experimental fluorescence resonance energy transfer-based IC(50)s for β-secretase inhibitors (R(2)?=?0.9133). 相似文献