首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Accumulation of the beta-amyloid peptide (Abeta) is a primary event in the pathogenesis of Alzheimer's disease (AD). However, the mechanisms by which Abeta mediates neurotoxicity and initiates the degenerative processes of AD are still not clear. Recent evidence shows that voltage-gated K+ channels may be involved in Abeta-induced neurodegenerative processes. In particular, a transient A-type K+ current, with a linear increase in its density with distance from soma to distal dendrites in hippocampal CA1 pyramidal neurons, has been shown to contribute to dendritic membrane excitability. Here, I report that Abeta (1-42) inhibits the dendritic A-type K+ current in hippocampal CA1 pyramidal neurons, and this inhibition causes increases in back-propagating dendritic action potential amplitude and associated Ca2+ influx. These results suggest that the persistent inhibition of the A-type K+ current resulting from deposition of Abeta in dendritic arborization will induce a sustained increase in dendritic Ca2+ influx and lead to loss of Ca2+ homeostasis. This may be a component of the events that cause synaptic failure and initiate neuronal degenerative processes in the hippocampus.  相似文献   

2.
The striatum is the major input structure of basal ganglia and is involved in adaptive control of behaviour through the selection of relevant informations. Dopaminergic neurons that innervate striatum die in Parkinson disease, leading to inefficient adaptive behaviour. Neuronal activity of striatal medium spiny neurons (MSN) is modulated by dopamine receptors. Although dopamine signalling had received substantial attention, consequences of dopamine depletion on MSN intrinsic excitability remain unclear. Here we show, by performing perforated patch clamp recordings on brain slices, that dopamine depletion leads to an increase in MSN intrinsic excitability through the decrease of an inactivating A-type potassium current, I A. Despite the large decrease in their excitatory synaptic inputs determined by the decreased dendritic spines density and the increase in minimal current to evoke the first EPSP, this increase in intrinsic excitability resulted in an enhanced responsiveness to their remaining synapses, allowing them to fire similarly or more efficiently following input stimulation than in control condition. Therefore, this increase in intrinsic excitability through the regulation of I A represents a form of homeostatic plasticity allowing neurons to compensate for perturbations in synaptic transmission and to promote stability in firing. The present observations show that this homeostatic ability to maintain firing rates within functional range also occurs in pathological conditions, allowing stabilizing neural computation within affected neuronal networks.  相似文献   

3.
The dendrites of CA1 pyramidal neurons in the hippocampus express numerous types of voltage-gated ion channel, but the distributions or densities of many of these channels are very non-uniform. Sodium channels in the dendrites are responsible for action potential (AP) propagation from the axon into the dendrites (back-propagation); calcium channels are responsible for local changes in dendritic calcium concentrations following back-propagating APs and synaptic potentials; and potassium channels help regulate overall dendritic excitability. Several lines of evidence are presented here to suggest that back-propagating APs, when coincident with excitatory synaptic input, can lead to the induction of either long-term depression (LTD) or long-term potentiation (LTP). The induction of LTD or LTP is correlated with the magnitude of the rise in intracellular calcium. When brief bursts of synaptic potentials are paired with postsynaptic APs in a theta-burst pairing paradigm, the induction of LTP is dependent on the invasion of the AP into the dendritic tree. The amplitude of the AP in the dendrites is dependent, in part, on the activity of a transient, A-type potassium channel that is expressed at high density in the dendrites and correlates with the induction of the LTP. Furthermore, during the expression phase of the LTP, there are local changes in dendritic excitability that may result from modulation of the functioning of this transient potassium channel. The results support the view that the active properties of dendrites play important roles in synaptic integration and synaptic plasticity of these neurons.  相似文献   

4.
Most neurons have elaborate dendritic trees that receive tens of thousands of synaptic inputs. Because postsynaptic responses to individual synaptic events are usually small and transient, the integration of many synaptic responses is needed to depolarize most neurons to action potential threshold. Over the past decade, advances in electrical and optical recording techniques have led to new insights into how synaptic responses propagate and interact within dendritic trees. In addition to their passive electrical and morphological properties, dendrites express active conductances that shape individual synaptic responses and influence synaptic integration locally within dendrites. Dendritic voltage-gated Na(+) and Ca(2+) channels support action potential backpropagation into the dendritic tree and local initiation of dendritic spikes, whereas K(+) conductances act to dampen dendritic excitability. While all dendrites investigated to date express active conductances, different neuronal types show specific patterns of dendritic channel expression leading to cell-specific differences in the way synaptic responses are integrated within dendritic trees. This review explores the way active and passive dendritic properties shape synaptic responses in the dendrites of central neurons, and emphasizes their role in synaptic integration.  相似文献   

5.
6.
Focal activation of glutamate receptors in distal dendrites of hippocampal pyramidal cells triggers voltage-dependent Ca(2+) channel-mediated plateau potentials that are confined to the stimulated dendrite. We examined the role of dendritic K(+) conductances in determining the amplitude, duration, and spatial compartmentalization of plateau potentials. Manipulations that blocked SK-type Ca(2+)-activated K(+) channels, including apamin and BAPTA dialysis, increased the duration of plateau potentials without affecting their amplitude or compartmentalization. Manipulations that blocked Kv4.2 A-type K(+) channels, including a dominant-negative Kv4.2 construct and 4-aminopyridine, increased the amplitude of plateau potentials by allowing them to recruit neighboring dendrites. Prolongation of plateau potentials or block of Kv4.2 channels at branch points facilitated the ability of dendritic excitation to trigger fast action potentials. SK channels thus underlie repolarization of dendritic plateau potentials, whereas Kv4.2 channels confine these potentials to single dendritic branches, and both act in concert to regulate synaptic integration.  相似文献   

7.
Activity-dependent redistribution of ion channels mediates neuronal circuit plasticity and homeostasis, and could provide pro-epileptic or compensatory anti-epileptic responses to a seizure. Thalamocortical neurons transmit sensory information to the cerebral cortex and through reciprocal corticothalamic connections are intensely activated during a seizure. Therefore, we assessed whether a seizure alters ion channel surface expression and consequent neurophysiologic function of thalamocortical neurons. We report a seizure triggers a rapid (<2h) decrease of excitatory postsynaptic current (EPSC)-like current-induced phasic firing associated with increased transient A-type K(+) current. Seizures also rapidly redistributed the A-type K(+) channel subunit Kv4.2 to the neuronal surface implicating a molecular substrate for the increased K(+) current. Glutamate applied in vitro mimicked the effect, suggesting a direct effect of glutamatergic transmission. Importantly, leucine-rich glioma-inactivated-1 (LGI1), a secreted synaptic protein mutated to cause human partial epilepsy, regulated this seizure-induced circuit response. Human epilepsy-associated dominant-negative-truncated mutant LGI1 inhibited the seizure-induced suppression of phasic firing, increase of A-type K(+) current, and recruitment of Kv4.2 surface expression (in vivo and in vitro). The results identify a response of thalamocortical neurons to seizures involving Kv4.2 surface recruitment associated with dampened phasic firing. The results also identify impaired seizure-induced increases of A-type K(+) current as an additional defect produced by the autosomal dominant lateral temporal lobe epilepsy gene mutant that might contribute to the seizure disorder.  相似文献   

8.
9.
Many neurons possess dendrites enriched with sodium channels and are capable of generating action potentials. However, the role of dendritic sodium spikes remain unclear. Here, we study computational models of neurons to investigate the functional effects of dendritic spikes. In agreement with previous studies, we found that point neurons or neurons with passive dendrites increase their somatic firing rate in response to the correlation of synaptic bombardment for a wide range of input conditions, i.e. input firing rates, synaptic conductances, or refractory periods. However, neurons with active dendrites show the opposite behavior: for a wide range of conditions the firing rate decreases as a function of correlation. We found this property in three types of models of dendritic excitability: a Hodgkin-Huxley model of dendritic spikes, a model with integrate and fire dendrites, and a discrete-state dendritic model. We conclude that fast dendritic spikes confer much broader computational properties to neurons, sometimes opposite to that of point neurons.  相似文献   

10.
This study examined the ontogeny of voltage-sensitive calcium conductances in rat phrenic motoneurons (PMNs) and their role in regulating electrical excitability during the perinatal period. Specifically, we studied the period spanning from embryonic day (E)16 through postnatal day (P)1, when PMNs undergo fundamental transformation in their morphology, passive properties, ionic channel composition, synaptic inputs, and electrical excitability. Low voltage-activated (LVA) and high voltage-activated (HVA) conductances were measured using whole cell patch recordings utilizing a cervical slice-phrenic nerve preparation from perinatal rats. Changes between E16 and P0-1 included the following: an approximately 2-fold increase in the density of total calcium conductances, an approximately 2-fold decrease in the density of LVA calcium conductances, and an approximately 3-fold increase in the density of HVA conductances. The elevated expression of T-type calcium channels during the embryonic period lengthened the action potential and enhanced electrical excitability as evidenced by a hyperpolarization-evoked rebound depolarization. The reduction of LVA current density coupled to the presence of a hyperpolarizing outward A-type potassium current had a critical effect in diminishing the rebound depolarization in neonatal PMNs. The increase in HVA current density was concomitant with the emergence of a calcium-dependent "hump-like" afterdepolarization (ADP) and burst-like firing. Neonatal PMNs develop a prominent medium-duration afterhyperpolarization (mAHP) as the result of coupling between N-type calcium channels and small conductance, calcium-activated potassium channels. These data demonstrate that changes in calcium channel expression contribute to the maturation of PMN electrophysiological properties during the time from the commencement of fetal inspiratory drive to the onset of continuous breathing at birth.  相似文献   

11.
In a simulated neuron with a dendritic tree, the relative effects of active and passive dendritic membranes on transfer properties were studied. The simulations were performed by means of a digital computer. The computations calculated the changes in transmembrane voltages of many compartments over time as a function of other biophysical variables. These variables were synaptic input intensity, critical firing threshold, rate of leakage of current across the membrane, and rate of longitudinal current spread between compartments. For both passive and active dendrites, the transfer properties of the soma studied for different rates of longitudinal current spread. With low rates of current spread, graded changes in firing threshold produced correspondingly graded changes in output discharge. With high rates of current spread, the neuron became a bistable operator where spiking was enhanced if the threshold was below a certain level and suppressed if the threshold was above that level. Since alterations in firing threshold were shown to have the same effect on firing rate as alterations in synaptic input intensity, the neuron can be said to change from graded to contrast-enhancing in its response to stimuli of different intensities. The presence or absence of dendritic spiking was found to have a significant effect on the integrative properties of the simulated neuron. In particular, contrast enhancement was considerably more pronounced in neurons with passive than with active dendrites in that somatic spike rates reached a higher maximum when dendrites were passive. With active dendrites, a less intense input was needed to initiate somatic spiking than with passive dendrites because a distal dendritic spike could easily propagate by means of longitudinal current spread to the soma. Once somatic spiking was initiated, though, spike rates tended to be lower with active than with passive dendrites because the soma recovered more slowly from its post-spike refractory period if it was also influenced by refractory periods in the dendrites. The experiment of comparing neurons with active and passive dendrites was repeated at a different, higher value of synaptic input. The same differences in transfer properties between the active and passive cases emerged as before. Spiking patterns in neurons with active dendrites were also affected by the time distribution of synaptic inputs. In a previous study, inputs had been random over both space and time, varying about a predetermined mean, whereas in the present study, inputs were random over space but uniform over time. When inputs were made uniform over time, spiking became more difficult to initiate and the transition from graded to bistable response became less sharp.  相似文献   

12.
The somatodendritic subthreshold A-type K+ current in neurons (ISA) depends on its kinetic and voltage-dependent properties to regulate membrane excitability, action potential repetitive firing, and signal integration. Key functional properties of the Kv4 channel complex underlying ISA are determined by dipeptidyl peptidase-like proteins known as dipeptidyl peptidase 6 (DPP6) and dipeptidyl peptidase 10 (DPP10). Among the multiple known DPP10 isoforms with alternative N-terminal sequences, DPP10a confers exceptionally fast inactivation to Kv4.2 channels. To elucidate the molecular basis of this fast inactivation, we investigated the structure-function relationship of the DPP10a N-terminal region and its interaction with the Kv4.2 channel. Here, we show that DPP10a shares a conserved N-terminal sequence (MNQTA) with DPP6a (aka DPP6-E), which also induces fast inactivation. Deletion of the NQTA sequence in DPP10a eliminates this dramatic fast inactivation, and perfusion of MNQTA peptide to the cytoplasmic face of inside-out patches inhibits the Kv4.2 current. DPP10a-induced fast inactivation exhibits competitive interactions with internally applied tetraethylammonium (TEA), and elevating the external K+ concentration accelerates recovery from DPP10a-mediated fast inactivation. These results suggest that fast inactivation induced by DPP10a or DPP6a is mediated by a common N-terminal inactivation motif via a pore-blocking mechanism. This mechanism may offer an attractive target for novel pharmacological interventions directed at impairing ISA inactivation and reducing neuronal excitability.  相似文献   

13.
J. Neurochem. (2012) 122, 1145-1154. ABSTRACT: Cooling temperatures may modify action potential firing properties to alter sensory modalities. Herein, we investigated how cooling temperatures modify action potential firing properties in two groups of rat dorsal root ganglion (DRG) neurons, tetrodotoxin-sensitive (TTXs) Na(+) channel-expressing neurons and tetrodotoxin-resistant (TTXr) Na(+) channel-expressing neurons. We found that multiple action potential firing in response to membrane depolarization was suppressed in TTXs neurons but maintained or facilitated in TTXr neurons at cooling temperatures. We showed that cooling temperatures strongly inhibited A-type K(+) currents (IA) and TTXs Na(+) channels but had fewer inhibitory effects on TTXr Na(+) channels and non-inactivating K(+) currents (IK). We demonstrated that the sensitivity of A-type K(+) channels and voltage-gated Na(+) channels to cooling temperatures and their interplay determine somatosensory neuron excitability at cooling temperatures. Our results provide a putative mechanism by which cooling temperatures modify different sensory modalities including pain.  相似文献   

14.
Although the supralinear summation of synchronizing excitatory postsynaptic potentials (EPSPs) and backpropagating action potentials (APs) is important for spike-timing-dependent synaptic plasticity (STDP), the spatial conditions of the amplification in the divergent dendritic structure have yet to be analyzed. In the present study, we simulated the coincidence of APs with EPSPs at randomly determined synaptic sites of a morphologically reconstructed hippocampal CA1 pyramidal model neuron and clarified the spatial condition of the amplifying synapses. In the case of uniform conductance inputs, the amplifying synapses were localized in the middle apical dendrites and distal basal dendrites with small diameters, and the ratio of synapses was unexpectedly small: 8-16% in both apical and basal dendrites. This was because the appearance of strong amplification requires the coincidence of both APs of 3-30 mV and EPSPs of over 6 mV, both of which depend on the dendritic location of synaptic sites. We found that the localization of amplifying synapses depends on A-type K+ channel distribution because backpropagating APs depend on the A-type K+ channel distribution, and that the localizations of amplifying synapses were similar within a range of physiological synaptic conductances. We also quantified the spread of membrane amplification in dendrites, indicating that the neighboring synapses can also show the amplification. These findings allowed us to computationally illustrate the spatial localization of synapses for supralinear summation of APs and EPSPs within thin dendritic branches where patch clamp experiments cannot be easily conducted.  相似文献   

15.
While plasticity is typically associated with persistent modifications of synaptic strengths, recent studies indicated that modulations of dendritic excitability may form the other part of the engram and dynamically affect computational processing and output of neuronal circuits. However it remains unknown whether modulation of dendritic excitability is controlled by synaptic changes or whether it can be distinct from them. Here we report the first observation of the induction of a persistent plastic decrease in dendritic excitability decoupled from synaptic stimulation, which is localized and purely activity-based. In rats this local plasticity decrease is conferred by CamKII mediated phosphorylation of A-type potassium channels upon interaction of a back propagating action potential (bAP) with dendritic depolarization.  相似文献   

16.
17.
18.
The effect of extracellularly applied electrical fields on neuronal excitability and firing behavior is attributed to the interaction between neuronal morphology and the spatial distribution and level of differential polarization induced by the applied field in different elements of the neuron. The presence of voltage-gated ion channels that mediate persistent inward currents (PICs) on the dendrites of spinal motoneurons enhances the influence of electrical fields on the motoneuronal firing behavior. The goal of the present study was to investigate, with a realistic motoneuron computer model, the effects of extracellularly applied electrical fields on the excitability of spinal motoneurons with the aim of reducing the increased motoneuronal excitability after spinal cord injury (SCI). Our results suggest that electrical fields could suppress the excitability of motoneurons and reduce their firing rate significantly by modulating the magnitude of their dendritic PIC. This effect was achieved at different field directions, intensities, and polarities. The reduction in motoneuronal firing rate resulted from the reduction in the magnitude of the dendritic PIC reaching the soma by the effect of the applied electrical field. This reduction in PIC was attributed to the dendritic field-induced differential polarization and the nonlinear current-voltage relationship of the dendritic PIC-mediating channels. Because of the location of the motoneuronal somata and initial segment with respect to the dendrites, these structures were minimally polarized by the applied field compared with the extended dendrites. In conclusion, electrical fields could be used for suppressing the hyperexcitability of spinal motoneurons after SCI and reducing the level of spasticity.  相似文献   

19.
The patch-clamp technique allows investigation of the electrical excitability of neurons and the functional properties and densities of ion channels. Most patch-clamp recordings from neurons have been made from the soma, the largest structure of individual neurons, while their dendrites, which form the majority of the surface area and receive most of the synaptic input, have been relatively neglected. This protocol describes techniques for recording from the dendrites of neurons in brain slices under direct visual control. Although the basic technique is similar to that used for somatic patching, we describe refinements and optimizations of slice quality, microscope optics, setup stability and electrode approach that are required for maximizing the success rate for dendritic recordings. Using this approach, all configurations of the patch-clamp technique (cell-attached, inside-out, whole-cell, outside-out and perforated patch) can be achieved, even for relatively distal dendrites, and simultaneous multiple-electrode dendritic recordings are also possible. The protocol--from the beginning of slice preparation to the end of the first successful recording--can be completed in 3 h.  相似文献   

20.
Postsynaptic Ca2+ changes are involved in control of cellular excitability and induction of synaptic long-term changes. We monitored Ca2+ changes in dendrites and spines during synaptic and direct stimulation using high resolution microfluorometry of fura-2 injected into CA3 pyramidal neurons in guinea pig hippocampal slice. When driven by current injection from an intracellular electrode or with synaptic stimulation, postsynaptic Ca2+ accumulations were highest in the proximal dendrites with a pronounced fall-off towards the soma and some fall-off towards more distal dendrites. Muscarinic activation by low concentrations of carbachol strongly increased intradendritic Ca2+ accumulation during directly-evoked repetitive firing. This enhancement occurred in large part because muscarinic activation suppressed the normal Ca(2+)-dependent activation of K-channels that mediates adaptation of firing. Repetitive firing of cholinergic fibers in the slice reproduced the effects of carbachol. Inhibition of acetylcholine-esterase activity by eserine enhanced the effects of repetitive stimulation of chlolinergic fibers. All effects were reversible and were blocked by the muscarinic antagonist atropine. Ca2+ accumulations in postsynaptic spines might be the basis of specificity of synaptic plasticity. With selective stimulation of few associative/comissural fibers, Ca2+ accumulated in single postsynaptic spines but not in the parent dendrite. With strong stimulation, dendrite levels also increased but spine levels were considerably higher. The NMDA-receptor antagonist AP-5 blocked Ca(2+)-peaks in spines, but left Ca2+ changes in dendrite shafts largely unaffected. Sustained steep Ca2+ gradients between single spines and the parent dendrite, often lasting several minutes, developed with repeated stimulation. Our results demonstrate a spine entity that can act independent from the dendrite with respect to Ca(2+)-dependent processes. Muscarinic augmentation of dendritic Ca2+ levels might reduce diffusional loss of Ca2+ from hot spines into the parent dendrite, thus supporting cooperativity and associativity of synaptic plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号