首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Wnt signaling pathways are regulated both at the intracellular and extracellular levels. During embryogenesis, the in vivo effects of the secreted frizzled-related protein (Sfrp) family of Wnt inhibitors are poorly understood. Here, we show that inactivation of Sfrp2 results in subtle limb defects in mice with mesomelic shortening and consistent shortening of all autopodal elements that is clinically manifested as brachydactyly. In addition, there is soft-tissue syndactyly of the hindlimb. The brachydactyly is caused by decreased chondrocyte proliferation and delayed differentiation in distal limb chondrogenic elements. These data suggest that Sfrp2 can regulate both chondrogenesis and regression of interdigital mesenchyme in distal limb. Sfrp2 can also repress canonical Wnt signaling by Wnt1, Wnt9a, and Wnt4 in vitro. Sfrp2-/- and TOPGAL/Sfrp2-/- mice have a mild increase in beta-catenin and beta-galactosidase staining, respectively, in some phalangeal elements. This however does not exclude a potential concurrent effect on non-canonical Wnt signaling in the growth plate. In combination with what is known about BMP and Wnt signaling in human brachydactylies, our data establish a critical role for Sfrp2 in proper distal limb formation and suggest SFPR2 could be a novel candidate gene for human brachy-syndactyly defects.  相似文献   

3.
Wnt‐signaling pathway is implicated in pancreatic development and functional regulation of mature beta‐cells. Wnt3a/Wnt pathway activation expands islet cell mass in vitro by increasing proliferation and decreasing apoptosis of beta‐cells, thereby enhancing its function. However, the signaling pathways that mediate these effects remain unknown. By using a clonal beta‐cell line (NIT‐1), we examined the role of IRS2/PI3K in the mediation of Wnt3a‐stimulated beta‐cell growth. Real‐time PCR and Western blot were employed to investigate the activity of Wnt/β‐catenin and IRS2/PI3K signaling. Proliferation of NIT‐1 cells was assessed by BrdU incorporation, and apoptosis was quantitatively determined by TUNEL and flow cytometry (FCM). Dkk1, an inhibitor of Wnt signaling, and wortmannin, an inhibitor of PI3K, were also used. Results showed that Wnt3a rapidly activated Wnt/β‐catenin signaling, promoted IRS2 expression and Akt phosphorylation in NIT‐1 cells. These effects were completely abrogated by Dkk1 or partially eliminated by wortmannin. Wnt3a also promoted NIT‐1 cell proliferation, inhibited cytokine‐induced beta‐cell apoptosis, and increased insulin secretion. Both of these effects were also eliminated by Dkk1 or wortmannin. Our results demonstrated that Wnt3a regulates proliferation, apoptosis and enhances function of pancreatic NIT‐1 beta cells via activation of Wnt/β‐catenin signaling, involving crosstalk with IRS2/PI3K signaling, with the effect of Wnt signaling on beta‐cells also being IRS2/PI3K/AKT dependent. J. Cell. Biochem. 114: 1488–1497, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
During somitogenesis, oscillatory expression of genes in the notch and wnt signaling pathways plays a key role in regulating segmentation. These oscillations in expression levels are elements of a species-specific developmental mechanism. To date, the periodicity and components of the human clock remain unstudied. Here we show that a human mesenchymal stem/stromal cell (MSC) model can be induced to display oscillatory gene expression. We observed that the known cycling gene HES1 oscillated with a 5 h period consistent with available data on the rate of somitogenesis in humans. We also observed cycling of Hes1 expression in mouse C2C12 myoblasts with a period of 2 h, consistent with previous in vitro and embryonic studies. Furthermore, we used microarray and quantitative PCR (Q-PCR) analysis to identify additional genes that display oscillatory expression both in vitro and in mouse embryos. We confirmed oscillatory expression of the notch pathway gene Maml3 and the wnt pathway gene Nkd2 by whole mount in situ hybridization analysis and Q-PCR. Expression patterns of these genes were disrupted in Wnt3a(tm1Amc) mutants but not in Dll3(pu) mutants. Our results demonstrate that human and mouse in vitro models can recapitulate oscillatory expression observed in embryo and that a number of genes in multiple developmental pathways display dynamic expression in vitro.  相似文献   

5.
Pancreatic ductal adenocarcinoma (PDA) is an extremely aggressive malignancy, which carries a dismal prognosis. Activating mutations of the Kras gene are common to the vast majority of human PDA. In addition, recent studies have demonstrated that embryonic signaling pathway such as Hedgehog and Notch are inappropriately upregulated in this disease. The role of another embryonic signaling pathway, namely the canonical Wnt cascade, is still controversial. Here, we use gene array analysis as a platform to demonstrate general activation of the canonical arm of the Wnt pathway in human PDA. Furthermore, we provide evidence for Wnt activation in mouse models of pancreatic cancer. Our results also indicate that Wnt signaling might be activated downstream of Hedgehog signaling, which is an early event in PDA evolution. Wnt inhibition blocked proliferation and induced apoptosis of cultured adenocarcinoma cells, thereby providing evidence to support the development of novel therapeutical strategies for Wnt inhibition in pancreatic adenocarcinoma.  相似文献   

6.
7.
8.
Nemo-like kinases define a novel family of serine/threonine kinases that are involved in integrating multiple signaling pathways. They are conserved regulators of Wnt/Wingless pathways, which may coordinate Wnt with TGFbeta-mediated signaling. Drosophila nemo was identified through its involvement in epithelial planar polarity, a process regulated by a non-canonical Wnt pathway. We have previously found that ectopic expression of Nemo using the Gal4-UAS system resulted in embryonic lethality associated with defects in patterning and head development. In this study we present our analyses of the phenotypes of germline clone-derived embryos. We observe lethality associated with head defects and reduction of programmed cell death and conclude that nmo is an essential gene. We also present data showing that nmo is involved in regulating apoptosis during eye development, based on both loss of function phenotypes and on genetic interactions with the pro-apoptotic gene reaper. Finally, we present genetic data from the adult wing that suggest the activity of ectopically expressed Nemo can be modulated by Jun N-terminal kinase (JNK) signaling. Such an observation supports the model that there is cross-talk between Wnt, TGFbeta and JNK signaling at multiple stages of development.  相似文献   

9.
10.
Neisseria meningitidis colonizes the human nasopharynx and occasionally causes lethal or damaging septicemia and meningitis. Here, we examined the adherence-mediated signaling of meningococci to human cells by comparing gene expression profiles of human umbilical vein endothelial cells (HUVEC) infected by adherent wild-type, frpC-deficient mutant, or the nonadherent (DeltapilD) N. meningitidis. Pili-mediated adhesion of meningococci resulted in alterations of expression levels of human genes known to regulate apoptosis, cell proliferation, inflammatory response, adhesion and genes for signaling pathway proteins such as TGF-beta/Smad, Wnt/beta-catenin and Notch/Jagged. This reveals that adhering piliated meningocci manipulate host signaling pathways controlling cell proliferation while establishing a commensal relationship.  相似文献   

11.
Genetic interactions regulating intermediate stages of tubulogenesis in the developing kidney have been difficult to define. A systems biology strategy using microarray was combined with in vitro/ex vivo and genetic approaches to identify pathways regulating specific stages of tubulogenesis. Analysis of the progression of the metanephric mesenchyme (MM) through four stages of tubule induction and differentiation (i.e., epithelialization, tubular organization and elongation and early differentiation) revealed signaling pathways potentially involved at each stage and suggested key roles for a number of signaling molecules. A screen of the signaling pathways on in vitro/ex vivo nephron formation implicated a unique regulatory role for protein kinase A (PKA), through PKA-2, in a specific post-epithelialization morphogenetic step (conversion of the renal vesicle to the S-shaped body). Microarray analysis not only confirmed this stage-specificity, but also highlighted the upregulation of Wnt genes. Addition of PKA agonists to LIF-induced nephrons (previously shown to be a Wnt/beta-catenin dependent pathway) disrupted normal tubulogenesis in a manner similar to PKA-agonist treated MM/spinal-cord assays, suggesting that PKA regulates a Wnt-dependent tubulogenesis step. PKA induction of canonical Wnt signaling during tubulogenesis was confirmed genetically using MM from Batgal-reporter mice. Addition of a Wnt synthesis inhibitor to activated PKA cultures rescued tubulogenesis. By re-analysis of existing microarray data from the FGF8, Lim1 and Wnt4 knockouts, which arrest in early tubulogenesis, a network of genes involving PKA, Wnt, Lhx1, FGF8, and hyaluronic acid signaling regulating the transition of nascent epithelial cells to tubular epithelium was derived, helping to reconcile in vivo and in vitro/ex vivo data.  相似文献   

12.
13.
Expression of the receptor tyrosine kinase-like orphan receptor 2 (Ror2) has been identified in an increasing array of tumor types and is known to play a role as an important mediator of Wnt signaling cascades. In this study, we aimed to clarify Ror2 interactions with the Wnt pathways within the context of renal cell carcinoma (RCC). An examination of Ror2 expression in primary human RCC tumors showed a significant correlation with several Wnt signaling genes, including the classical feedback target gene Axin2. We provide evidence that Ror2 expression results in a partially activated state for canonical Wnt signaling through an increased signaling pool of β-catenin, leading to an enhancement of downstream target genes following Wnt3a stimulation in both renal and renal carcinoma-derived cells. Additionally, inhibition of low-density lipoprotein receptor-related protein 6 (LRP6) with either siRNA or dickkopf decreased the response to Wnt3a stimulation, but no change was seen in the increased β-catenin pool associated with Ror2 expression, suggesting that LRP6 cofactor recruitment is necessary for a Wnt3a-induced signal but that it does not participate in the Ror2 effect on β-catenin signaling. These results highlight a new role for Ror2 in conveying a tonic signal to stabilize soluble β-catenin and create a poised state of enhanced responsiveness to Wnt3a exogenous signals in RCC.  相似文献   

14.
15.

Background

While the role of canonical (β-catenin-mediated) Wnt signaling in hematolymphopoiesis has been studied extensively, little is known of the potential importance of non-canonical Wnt signals in hematopoietic cells. Wnt4 is one of the Wnt proteins that can elicit non-canonical pathways. We have previously shown that retroviral overexpression of Wnt4 by hematopoietic cells increased thymic cellularity as well as the frequency of early thymic progenitors and bone marrow hematopoietic progenitor cells (HPCs). However, the molecular pathways responsible for its effect in HPCs are not known.

Methodology/Principal Findings

Here we report that Wnt4 stimulation resulted in the activation of the small GTPase Rac1 as well as Jnk kinases in an HPC cell line. Jnk activity was necessary, while β-catenin was dispensable, for the Wnt4-mediated expansion of primary fetal liver HPCs in culture. Furthermore, Jnk2-deficient and Wnt4 hemizygous mice presented lower numbers of HPCs in their bone marrow, and Jnk2-deficient HPCs showed increased rates of apoptosis. Wnt4 also improved HPC activity in a competitive reconstitution model in a cell-autonomous, Jnk2-dependent manner. Lastly, we identified Fz6 as a receptor for Wnt4 in immature HPCs and showed that the absence of Wnt4 led to a decreased expression of four polarity complex genes.

Conclusions/Significance

Our results establish a functional role for non-canonical Wnt signaling in hematopoiesis through a pathway involving Wnt4, Fz6, Rac1 and Jnk kinases.  相似文献   

16.
Cells are programmed to die when critical signaling and metabolic pathways are disrupted. Inhibiting the type 2 ryanodine receptor (RyR2) in human and mouse pancreatic beta-cells markedly increased apoptosis. This mode of programmed cell death was not associated with robust caspase-3 activation prompting a search for an alternative mechanism. Increased calpain activity and calpain gene expression suggested a role for a calpain-dependent death pathway. Using a combination of pharmacological and genetic approaches, we demonstrated that the calpain-10 isoform mediated ryanodine-induced apoptosis. Apoptosis induced by the fatty acid palmitate and by low glucose also required calpain-10. Ryanodine-induced calpain activation and apoptosis were reversed by glucagon-like peptide or short-term exposure to high glucose. Thus RyR2 activity seems to play an essential role in beta-cell survival in vitro by suppressing a death pathway mediated by calpain-10, a type 2 diabetes susceptibility gene with previously unknown function.  相似文献   

17.
Wnts are essential for a wide range of developmental processes, including cell growth, division, and differentiation. Some of these processes signal via the planar cell polarity (PCP) pathway, which is a β-catenin-independent Wnt signaling pathway. Previous studies have shown that Ryk, a member of the receptor tyrosine kinase family, can bind to Wnts. Ryk is required for normal axon guidance and neuronal differentiation during development. Here, we demonstrate that mammalian Ryk interacts with the Wnt/PCP pathway. In vitro analysis showed that the Wnt inhibitory factor domain of Ryk was necessary for Wnt binding. Detailed analysis of two vertebrate model organisms showed Ryk phenotypes consistent with PCP signaling. In zebrafish, gene knockdown using morpholinos revealed a genetic interaction between Ryk and Wnt11 during the PCP pathway-regulated process of embryo convergent extension. Ryk-deficient mouse embryos displayed disrupted polarity of stereociliary hair cells in the cochlea, a characteristic of disturbed PCP signaling. This PCP defect was also observed in mouse embryos that were double heterozygotes for Ryk and Looptail (containing a mutation in the core Wnt/PCP pathway gene Vangl2) but not in either of the single heterozygotes, suggesting a genetic interaction between Ryk and Vangl2. Co-immunoprecipitation studies demonstrated that RYK and VANGL2 proteins form a complex, whereas RYK also activated RhoA, a downstream effector of PCP signaling. Overall, our data suggest an important role for Ryk in Wnt/planar cell polarity signaling during vertebrate development via the Vangl2 signaling pathway, as demonstrated in the mouse cochlea.  相似文献   

18.

Relatively less is known about the interactions that tightly regulate the mesenchymal stem cells (MSCs) to maintain their pluripotency. Recent studies reports that Wnt proteins might play an important role in governing the MSC cell fate. In this study, we tested the hypothesis that Wnt proteins differentially regulate in vitro differentiation of human umbilical cord derived MSCs. Stromal cells from human umbilical cord (hUCMSCs) were isolated and treated with Wnt inhibitor/activator. FACS analysis of hUCMSCs for CD29, CD90, CD73, CD44, CD45 marker expression and gene expression of Wnt target genes and lineage specific genes were performed after Lithium Chloride (LiCl) and Quercetin treatment for 6 days. The cultured primary hUCMSCs demonstrated elevated MSC surface marker expression with clonogenic properties and differentiation potentials towards osteogenic, adipogenic and chondrogenic lineages. Downregulation in the expression of Wnt with Quercetin treatment was noted. LiCl treatment increased cellular proliferation but did not influence differentiation suggesting that the cells retain pluripotency whereas Quercetin treatment downregulated stemness markers, Wnt target gene expression and promoted osteogenesis as demonstrated by FACS analysis, calcium estimation and gene expression studies. Shift of differentiation potential after the inhibition of Wnt signaling by Quercetin was evident from the gene expression data and elevated calcium production, driving MSCs towards probable osteogenic lineage. The findings in particular are likely to open an interesting avenue of biomedical research, summarizing the impact of Wnt signaling on lineage commitment of MSCs.

  相似文献   

19.
20.
The loss of glypican-3 induces alterations in Wnt signaling   总被引:9,自引:0,他引:9  
Loss-of-function mutations of the GPC3 gene are the cause of the human Simpson-Golabi-Behmel syndrome. Based on the overgrowth phenotype of the Simpson-Golabi-Behmel syndrome patients and the key role played by the insulin-like growth factor (IGF) signaling system in regulating embryonic growth, it was speculated that GPC3 regulates IGF signaling. In order to test the validity of this hypothesis, we mated GPC3 knockout mice with insulin receptor substrate-1 (IRS-1) nullizygous mice. We found that GPC3 regulates organism growth independent of IRS-1, suggesting that GPC3 does not modulate IGF signaling. Instead, we found that GPC3 knockout mice exhibit alterations in the Wnt signaling pathway, which is also associated with the regulation of cell proliferation. In particular, the loss of GPC3 led to the inhibition of the non-canonical Wnt/JNK signaling pathway, while concomitantly causing the activation of canonical Wnt/beta-catenin signaling. These in vivo findings were confirmed in vitro upon the ectopic overexpression of GPC3 in mesothelioma cells. In these cells, the GPC3-induced increase in JNK activity was associated with an enhanced response to Wnt5a. Most interestingly, the heparan sulfate chains of GPC3 were not required for its stimulatory activity on Wnt5a signaling and for the formation of GPC3-Wnt5a complexes. We propose that at least in some cell types GPC3 serves as a selective regulator of Wnt signaling, by potentiating non-canonical Wnt signaling, while inhibiting the canonical Wnt signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号