首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Unusual amino acid residues such as L-β-aspartyl (Asp), D-α-Asp, and D-β-Asp have been detected in proteins and peptides such as α-crystallin in the lens and β-amyloid in the brain. These residues increase with age, and hence they are associated with age-related diseases. The enzyme protein D-aspartyl (L-isoaspartyl) O-methyltransferase (PIMT) can revert these residues back to the normal L-α-Asp residue. PIMT catalyzes transmethylation of S-adenosylmethionine to L-β-Asp and D-α-Asp residues in proteins and peptides. In this work, the substrate recognition mechanism of PIMT was investigated using docking and molecular dynamics simulation studies. It was shown that the hydrogen bonds of Ser60 and Val214 to the carboxyl group of Asp are important components during substrate recognition by PIMT. In addition, specific hydrogen bonds were observed between the main chains of the substrates and those of Ala61 and Ile212 of PIMT when PIMT recognized L-β-Asp. Hydrophobic interactions between the (n-1) residue of the substrates and Ile212 and Val214 of PIMT may also have an important effect on substrate binding. Volume changes upon substrate binding were also evaluated in the context of possible application to interpretation of size exclusion chromatography data.  相似文献   

2.
UV-B irradiation is one of the risk factors in age-related diseases. We have reported that biologically uncommon D-β-Asp residues accumulate in proteins from sun-exposed elderly human skin. A previous study also reported that carboxymethyl lysine (CML; one of the advanced glycation end products (AGEs)) which is produced by the oxidation of glucose and peroxidation of lipid, also increases upon UV B irradiation. The formation of D-β-Asp and CML were reported as the alteration of proteins in UV B irradiated skin, independently. In this study, in order to clarify the relationship between the formation of D-β-Asp and CML, immunohistochemical analysis using anti-D-β-Asp containing peptide antibodies and anti-CML antibodies was performed in UV B irradiated mice. Immunohistochemical analyses clearly indicated that an anti-D-β-Asp containing peptide antibody and anti-CML antibody reacted at a common area in UV B irradiated skin. Western blot analyses of the proteins isolated from UV B irradiated skin demonstrated that proteins of 50-70 kDa were immunoreactive towards antibodies for both D-β-Asp containing peptide and CML. These proteins were identified by proteomic analysis as members of the keratin families including keratin-1, keratin-6B, keratin-10, and keratin-14.  相似文献   

3.
Summary. The accumulation of D-isomers of aspartic acid (D-Asp) in proteins during aging has been implicated in the pathogenesis of Alzheimer’s disease (AD), cataracts and arteriosclerosis. Here, we identified a specific lactacystin-sensitive endopeptidase that cleaves the D-Asp-containing protein and named it D-aspartyl endopeptidase (DAEP). DAEP has a multi-complex structure (MW: 600 kDa) and is localized in the inner mitochondrial membrane. However, DAEP activity was not detected in E. coli, S. cerevisiae, and C. elegans. A specific inhibitor for DAEP, i-DAEP: (benzoyl-L-Arg-L-His-[D-Asp]-CH2Cl; MW: 563.01), was newly synthesized and inhibited DAEP activity (IC50, 3 μM), a factor of ten greater than lactacystin on DAEP. On the other hand, i-DAEP did not inhibit either the 20S or 26S proteasome. And we identified succinate dehydrogenase and glutamate dehydrogenase 1 as components of DAEP by affinity label using biotinylated i-DAEP. In the long life span of mammals, DAEP may serve as a scavenger against accumulation of racemized proteins in aging. Insights into DAEP will provide the foundation for developing treatments of diseases, such as AD, in which accumulation of D-Asp-containing proteins are implicated.  相似文献   

4.
The accumulation of D-isomers of aspartic acid (D-Asp) in proteins during aging has been implicated in the pathogenesis of Alzheimer's disease, cataracts, and arteriosclerosis. Here, we identified a specific lactacystin-sensitive endopeptidase that cleaves the D-Asp-containing protein and named it D-aspartyl endopeptidase (DAEP). DAEP has a multi-complex structure (MW: 600kDa) and is localized in the inner mitochondrial membrane of mouse and rabbit, but DAEP activity was not detected in Escherichia coli, Saccharomyces cerevisiae, and Caenorhabditis elegans. A specific inhibitor for DAEP was newly synthesized, and inhibited DAEP activity (IC(50), 3microM), a factor of 10 greater than lactacystin on DAEP. On the other hand, the inhibitor did not inhibit either the 20S or 26S proteasome.  相似文献   

5.
Fujii N  Kawaguchi T  Sasaki H  Fujii N 《Biochemistry》2011,50(40):8628-8635
The lens proteins are composed of α-, β-, and γ-crystallins that interact with each other to maintain the transparency and refractive power of the lens. Because the lens crystallins are long-lived proteins, they undergo various post-translational modifications including racemization, isomerization, deamidation, oxidation, glycation, and truncation. In βB2-crystallin, which is the most abundant β-crystallin, the deamidation of asparagine and glutamine residues has been reported. Here, we found that the aspartyl (Asp) residue at position 4 of βB2-crystallin in the lenses of elderly human individuals undergoes a significant degree of inversion and isomerization to the biologically uncommon residue D-β-Asp. Surprisingly, the D/L ratio of β-Asp at position 4 in βB2-crystallin from elderly donors (67-77 year old) was 0.88-3.21. A D/L ratio of amino acids greater than 1.0 is defined as an inversion of configuration from the L- to D-form, rather than a racemization. These extremely high D/L ratios are equivalent to those of Asp-58 and Asp-151 (D/L ratio: 3.1 for Asp-58 and 5.7 for Asp-151) in αA-crystallin from elderly donors (~80 year old) as reported previously. Initially, we identified specific Asp residues in the β-crystallin family of proteins that undergo a high degree of inversion. These results show that the isomerization and inversion of Asp residues occurs both in the α- and β-crystallins of the lens. Inversion of these Asp residues directly affects the higher order structure of the protein. Hence, this modification may change crystallin-crystallin interactions and disrupt the function of crystallins in the lens.  相似文献   

6.
The l-α-Asp residues in peptides or proteins are prone to undergo nonenzymatic reactions to form l-β-Asp, d-α-Asp, and d-β-Asp residues via a succinimide five-membered ring intermediate. From these three types of isomerized aspartic acid residues, particularly d-β-Asp has been widely detected in aging tissue. In this study, we computationally investigated the cyclization of α- and β-Asp residues to form succinimide with dihydrogen phosphate ion as a catalyst (H2PO4). We performed the study using B3LYP/6-31 + G(d,p) density functional theory calculations. The comparison of the activation barriers of both residues is discussed. All the calculations were performed using model compounds in which an α/β-Asp-Gly sequence is capped with acetyl and methylamino groups on the N- and C-termini, respectively. Moreover, H2PO4 catalyzes all the steps of the succinimide formation (cyclization-dehydration) acting as a proton-relay mediator. The calculated activation energy barriers for succinimide formation of α- and β-Asp residues are 26.9 and 26.0 kcal mol 1, respectively. Although it was experimentally confirmed that β-Asp has higher stability than α-Asp, there was no clear difference between the activation barriers. Therefore, the higher stability of β-Asp residue than α-Asp residue may be caused by an entropic effect associated with the succinimide formation.  相似文献   

7.
Dβ (or D-iso)- and Lβ- (or iso)- aspartyl (Asp) residues are accumulated in aged lens crystallins and amyloid beta (Aβ) proteins, respectively, as a result of spontaneous, nonenzymatic isomerization of normal Lα-Asp. To explore why such uncommon Asp isomers are accumulated, the stability of Lα-, Lβ-, and Dβ-Asp was compared in view of the staggered side-chain conformers. By using cylindrin (KVKVLGD7VIEV) from αB-crystallin and Aβ17-25 (L17VFF20AED23)VG25) containing Asp isomers, the vicinal spin-spin coupling constants of Asp Hα-Hβ1 and Hα-Hβ2 were quantified by high-resolution solution 1H NMR. It was found that the trans conformer was extremely preferred in Dβ-Asp7 side-chain of cylindrin. In Aβ17–25, the side chain of Lβ-Asp23 was likely to adopt trans conformer, while gauche conformers were rather rich in Lα-Asp23. In gauche conformers, the close distance between Asp carboxylate carbon (CCOO-) and backbone nitrogen (N) next to Asp is advantageous to the intramolecular cyclization to form succinimide intermediate, followed by the conversion from α- to β-Asp. The cyclization is limited in the trans conformer because of the long distance between CCOO- and N, to keep Dβ- or Lβ-Asp stable. This would be the reason for the site specificity of Asp isomerization in proteins. The higher population of trans conformer in Asp side chain, the less isomerization of Asp as shown as Asp76 in αA-crystallin. The stability and less reactivity of normal Asp and its isomers are the potential factors to determine whether or not the abnormal accumulation is permitted in aged crystallins and Aβ.  相似文献   

8.
Four hexapeptides of sequence L-Val-L-Tyr-L-Pro-(Asp)-Gly-L-Ala containing D- or L-aspartyl residues in normal or isopeptide linkages have been synthesized by the Merrifield solid-phase method as potential substrates of the erythrocyte protein carboxyl methyltransferase. This enzyme has been shown to catalyze the methylation of D-aspartyl residues in proteins in red blood cell membranes and cytosol. Using a new vapor-phase methanol diffusion assay, we have found that the normal hexapeptides containing either D- or L-aspartyl residues were not substrates for the human erythrocyte methyltransferase. On the other hand, the L-aspartyl isopeptide, in which the glycyl residue was linked in a peptide bond to the beta-carboxyl group of the aspartyl residue, was a substrate for the enzyme with a Km of 6.3 microM and was methylated with a maximal velocity equal to that observed when ovalbumin was used as a methyl acceptor. The enzyme catalyzed the transfer of up to 0.8 mol of methyl groups/mol of this peptide. Of the four synthetic peptides, only the L-isohexapeptide competitively inhibits the methylation of ovalbumin by the erythrocyte enzyme. This peptide also acts as a substrate for both of the purified protein carboxyl methyltransferases I and II which have been previously isolated from bovine brain (Aswad, D. W., and Deight, E. A. (1983) J. Neurochem. 40, 1718-1726). The L-isoaspartyl hexapeptide represents the first defined synthetic substrate for a eucaryotic protein carboxyl methyltransferase. These results demonstrate that these enzymes can not only catalyze the formation of methyl esters at the beta-carboxyl groups of D-aspartyl residues but can also form esters at the alpha-carboxyl groups of isomerized L-aspartyl residues. The implications of these findings for the metabolism of modified proteins are discussed.  相似文献   

9.
Although proteins consist exclusively of L-amino acids, we have reported that aspartyl (Asp) 58 and Asp 151 residues of αA-crystallin of eye lenses from elderly cataract donors are highly inverted and isomerized to D-β, D-α and L-β-Asp residues through succinimide intermediates. Of these Asp isomers, large amounts of D-β- and L-β-isomers are present but the amount of D-α-isomer is not significant. The difference in abundance of the Asp isomers in the protein may be due to the rate constants for the formation of the isomers. However, the kinetics have not been well defined. Therefore, in this study, we synthesized a peptide corresponding to human αA-crystallin residues 55 to 65 (T55VLD58SGISEVR65) and its isomers in which L-α-Asp at position 58 was replaced with L-β-, D-β- and D-α-Asp and determined the rate of isomerization and inversion of Asp residues under physiological conditions (37°C, pH7.4). The rate constant for dehydration from L-α-Asp peptide to L-succinimidyl peptide was 3 times higher than the rate constant for dehydration from L-β-Asp peptide to L-succinimidyl peptide. The rate constant for hydrolysis from L-succinimidyl peptide to L-β-Asp peptide was about 5 times higher than the rate constant for hydrolysis from L-succinimidyl peptide to L-α-Asp peptide. The rate constant for dehydration from L-α-Asp peptide to L-succinimidyl peptide was 2 times higher than the rate constant for dehydration from D-α-Asp peptide to D-succinimidyl peptide. The rate constants for hydrolysis from L-succinimidyl peptide to L-β-Asp peptide and for hydrolysis from D-succinimidyl peptide to D-β-Asp peptide were almost equal. Using these rate constants, we calculated the change in the abundance ratios of the 4 Asp isomers during a human lifespan. This result is consistent with the fact that isomerized Asp residues accumulate in proteins during the ageing process.  相似文献   

10.
The non-stereospecific α-haloalkanoic acid dehalogenase E (DehE) degrades many halogenated compounds but is ineffective against β-halogenated compounds such as 3-chloropropionic acid (3CP). Using molecular dynamics (MD) simulations and site-directed mutagenesis we show here that introducing the mutation S188V into DehE improves substrate specificity towards 3CP. MD simulations showed that residues W34, F37, and S188 of DehE were crucial for substrate binding. DehE showed strong binding ability for D-2-chloropropionic acid (D-2CP) and L-2-chloropropionic acid (L-2CP) but less affinity for 3CP. This reduced affinity was attributed to weak hydrogen bonding between 3CP and residue S188, as the carboxylate of 3CP forms rapidly interconverting hydrogen bonds with the backbone amide and side chain hydroxyl group of S188. By replacing S188 with a valine residue, we reduced the inter-molecular distance and stabilised bonding of the carboxylate of 3CP to hydrogens of the substrate-binding residues. Therefore, the S188V can act on 3CP, although its affinity is less strong than for D-2CP and L-2CP as assessed by Km. This successful alteration of DehE substrate specificity may promote the application of protein engineering strategies to other dehalogenases, thereby generating valuable tools for future bioremediation technologies.  相似文献   

11.
A protein tyrosine kinase has been purified from the particulate fraction of bovine spleen to a specific activity of 0.217 mumol/min/mg at 100 microM ATP and 3 mM [Val5] angiotensin II. Both the angiotensin phosphorylation activity and immunoreactivity towards an antibody preparation raised against a synthetic peptide containing the autophosphorylation site of pp60c-src, Cys-src(403-421), were monitored during the purification. The purified sample displayed three closely spaced protein bands with molecular weights of 50-55 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. All bands could be phosphorylated exclusively on tyrosine residues under autophosphorylation conditions. All reacted on immunoblots with an antibody raised against a synthetic peptide corresponding to the consensus autophosphorylation site of members of the pp60c-src family of tyrosine kinases. Tryptic phosphopeptide maps of the three proteins were essentially indistinguishable. The results suggest that the purified enzyme preparation contained mainly three closely related pp60c-src-family protein tyrosine kinases or a pp60src-family protein tyrosine kinase modified posttranslationally to give three closely spaced protein bands on sodium dodecyl sulfate gel. Neither of these proteins appears to be pp60c-src or p56lck. The spleen protein tyrosine kinase was found to phosphorylate a p34cdc2 kinase peptide, Cys-cdc2(8-20), which contained the regulatory tyrosine residue Tyr-15 about 20 times better than [Val5]angiotensin II or Cys-src(403-421) peptide at a peptide substrate concentration of 1 mM. In contrast, epidermal growth factor receptor kinase partially purified from A431 cells did not show preference for Cys-cdc2(8-20) as its substrate. Although Cys-cdc2(8-20) contained two tyrosine residues, only the tyrosine corresponding to Tyr-15 in p34cdc2 was phosphorylated by the spleen tyrosine kinase. The observation suggests that the primary structure surrounding Tyr-15 of p34cdc2 contains substrate structural determinants specific for the spleen tyrosine kinase.  相似文献   

12.
Proteins are composed exclusively of l-amino acids. Among elderly individuals, however, d-aspartic acid (d-Asp) residues have been found in eye lens and brain, as well as in other tissues. The presence of d-Asp may change the higher-order structure of a protein, which in turn may have a role in age-related disorders such as cataract and Alzheimer's disease. d-Asp results from the spontaneous racemization of Asp residues in susceptible proteins. During aging, natural lα-Asp residues in proteins are non-enzymatically isomerized via a succinimidyl intermediate to l-β-, d-α- and d-β-isomers. This isomerization does not happen uniformly, but instead occurs at specific residues that are susceptible to isomerization due to their sequence or structural context. Thus, it is necessary to establish the nature of each individual Asp residue in susceptible proteins. Recently, a new method based on LC-MS/MS for the analysis of Asp isomerization at specific protein sites has been described. In this review, we first show that the homochirality of amino acids in proteins is not guaranteed throughout life. We then describe the development of a new method for protein-bound d-amino acid analysis, and discuss the negative influence that d-Asp has on protein structure and function.  相似文献   

13.
Isomerization of aspartate (Asp) is a common non-enzymatic posttranslational modification. Isomerized residues accumulate in proteins associated with age-related human disorders such as cataract and are well known to affect protein structure and function. We previously detected d-Asp-containing peptides in human serum. In this study, we investigated whether isomerized Asp residues are present in human immunoglobulin G (IgG) kappa chain by a qualitative d-amino acid analysis based on diastereomer formation and liquid chromatography tandem mass spectrometry (LC-MS/MS). We also investigated the d/l ratio of Asp residues in the IgG kappa chain in serum from donors aged 25, 37, 41, 54 and 67 years. As a result, two isomerized Asp residues, Asp151 and Asp170, were detected in the IgG kappa chain, and the d/l ratio of these residues was found to increase with aging. To assess the effects of this isomerization, we synthesized four isomeric peptides of IgG kappa chain containing lα-, lβ-, dα-, or dβ-Asp at position 170, and compared their secondary structures by CD spectroscopy. Peptide containing normal lα-Asp170 showed type II β-turn structure, while the other isomeric peptides showed random structure, clearly indicating that substitution of a single Asp isomer alters the secondary structure of the peptide. Because IgG is a main component of humoral immunity, Asp isomerization in IgG may reflect changes of structure and decrease in immune function. Proteome research on serum from the standpoint of racemization might enable us to develop new kinds of biomarker and new directions to study the aging process.  相似文献   

14.
Homochirality is essential for life. L-Amino acids are exclusively used as substrates for the polymerization and formation of peptides and proteins in living systems. However, d-amino acids, which are enantiomers of L-amino acids, were recently detected in various living organisms in the form of free D-amino acids and D-amino acid residues in peptides and proteins. In particular, D-aspartyl (Asp) residues have been detected in various proteins from diverse tissues of elderly individuals. Here, we describe three important aspects of our research: (i) a method for detecting D-β-Asp at specific sites in particular proteins, (ii) a likely spontaneous mechanism by which Asp residues in proteins invert and isomerize to the D-β-form with age under physiological conditions, (iii) a discussion of factors that favor such a reaction.  相似文献   

15.
DL-2-Haloacid dehalogenase from Pseudomonas sp. 113 (DL-DEX 113) catalyzes the hydrolytic dehalogenation of D- and L-2-haloalkanoic acids, producing the corresponding L- and D-2-hydroxyalkanoic acids, respectively. Every halidohydrolase studied so far (L-2-haloacid dehalogenase, haloalkane dehalogenase, and 4-chlorobenzoyl-CoA dehalogenase) has an active site carboxylate group that attacks the substrate carbon atom bound to the halogen atom, leading to the formation of an ester intermediate. This is subsequently hydrolyzed, resulting in the incorporation of an oxygen atom of the solvent water molecule into the carboxylate group of the enzyme. In the present study, we analyzed the reaction mechanism of DL-DEX 113. When a single turnover reaction of DL-DEX 113 was carried out with a large excess of the enzyme in H(2)(18)O with a 10 times smaller amount of the substrate, either D- or L-2-chloropropionate, the major product was found to be (18)O-labeled lactate by ionspray mass spectrometry. After a multiple turnover reaction in H(2)(18)O, the enzyme was digested with trypsin or lysyl endopeptidase, and the molecular masses of the peptide fragments were measured with an ionspray mass spectrometer. No peptide fragments contained (18)O. These results indicate that the H(2)(18)O of the solvent directly attacks the alpha-carbon of 2-haloalkanoic acid to displace the halogen atom. This is the first example of an enzymatic hydrolytic dehalogenation that proceeds without producing an ester intermediate.  相似文献   

16.
The peptide RHDSGY, a fragment of the human β-amyloid Zn-binding site, and its isomers RH(D-Asp)SGY and RH(β-Asp)SGY have been obtained as amides by means of solid-phase synthesis and analyzed by HPLC and various mass spectrometric methods. The problem of low yield of the RHDSGY peptide and its isomers attributed to 9-fluorenylmethoxycarbonyl (Fmoc)-amino acids and/or formation of such side-products as RH(β-Asp)SGY (or RHDSGY during synthesis of RH(β-Asp)SGY) and RH(Asp-imide) SGY was solved via selection of individual reagents for removal of Fmoc groups from α-amino groups of the growing peptide chain.  相似文献   

17.
Previous analysis of a chimeric enzyme mBEII-IBspHI, in which the C-terminal 229 amino acids of maize endosperm branching enzyme isoform II (mBEII) are replaced by the corresponding 284 amino acids of isoform I (mBEI), suggested that the carboxyl terminus of maize branching enzymes may be involved in catalytic efficiency and substrate preference. In the present study, additional hybrids of mBEI and mBEII were generated and expressed in Escherichia coli BL21 (DE3) to dissect the structure/function relationships of the C-terminal regions of maize branching enzymes. A truncated form of purified mBEII-IBspHI, which lacks the C-terminal 58 amino acids, retained similar levels of V(max) in branching activity, K(m) for reduced amylose AS 320, and substrate preference for amylose than amylopectin when compared to mBEII-IBspHI. This indicates that the C-terminal extension derived from mBEI is not required for either catalysis or substrate preference. However, deletion of an additional 87 amino acids from the carboxyl terminus resulted in complete loss of activity. Replacement of the deleted C-terminal additional 87 amino acids with the corresponding 79 amino acids from mBEII restored 25% of the mBEII-IBspHI branching activity without altering substrate preference. It thus appears that a C-terminal region encompassing Leu649-Asp735 of mBEII-IBspHI is required for maximum catalytic efficiency. Another C-terminal region, residues Gln510-Asp648, of mBEII-IBspHI (Gln476-Asp614 of mBEI) may be involved in substrate-preference determination.  相似文献   

18.
Substrate recognition through a PDZ domain in tail-specific protease   总被引:11,自引:0,他引:11  
Beebe KD  Shin J  Peng J  Chaudhury C  Khera J  Pei D 《Biochemistry》2000,39(11):3149-3155
Tail-specific protease (Tsp) is a periplasmic enzyme that selectively degrades proteins bearing a nonpolar C-terminus. Its substrate specificity suggests that Tsp may contain a substrate recognition domain, which selectively binds to the nonpolar C-termini of substrate proteins, separate from its catalytic site. In this work, we show that substrate recognition of Tsp is mediated by a PDZ domain, a small protein module that promotes protein-protein interactions by binding to internal or C-terminal sequences of their partner proteins. Partial proteolysis by V8 protease at a single peptide bond immediately N-terminal to the PDZ domain resulted in two distinct and relatively stable fragments and complete loss of catalytic activity. Photoaffinity labeling with a fluorescent nonpolar peptide caused the covalent attachment of the peptide to a single site on the Tsp protein. Systematic deletion mutagenesis of Tsp localized the binding site to amino acids 206-307, a region that completely encompasses the putative PDZ domain (217-301). The isolated PDZ domain (amino acids 206-334) is capable of folding into a well-behaved structure and binds to a nonpolar peptide with a dissociation constant (K(D)) of 1.9 microM, similar to that of the intact Tsp protein. Site-directed mutagenesis of a surface residue at the peptide binding site of the PDZ domain, valine 229, to Glu or Gln resulted in an increase in the K(M) value but had no effect on the k(cat) value. The use of a separate substrate recognition domain such as a PDZ domain may be a general mechanism for achieving selective protein degradation.  相似文献   

19.
An α-amylase from Aspergillus oryzae, Taka-amylase A (TAA), was cleaved into peptide fragments by an acid protease. Inactivation of TAA was greatly retarded by the addition of α-cyclodextrin or Ca2+. TAA peptide fragments were separated into two groups having no and high affinity to the substrate, soluble starch. This separation was done by the forced affinity chromatography method by a column of epichlorohydrin cross-linked soluble starch gel. Three peptides were isolated from the high-affinity fragments, purified by the ODS-120T column, and their amino acids were sequenced. Peptides I, II, and III originated from α2-helix, α3-helix, and β2-sheet, respectively, and all of these were located in the (β/α)8 barrel of the main domain of TAA molecule. A stereo graphic view showed that Peptides I–III were at the cleft near the catalytic site. Occurrence of a Trp residue in all three peptides strongly suggested that Trp was very important in the binding of TAA to the substrate, soluble starch.  相似文献   

20.
In this study, we investigated the possibility of using a modified hydantoinase process for the production of optically pure β-amino acids. Two aryl-substituted dihydropyrimidines D,L-6-phenyl-5,6-dihydrouracil (PheDU) and para-chloro-D,L-6-phenyl-5,6-dihydrouracil (pClPheDU) were synthesized. Hydrolysis of these novel substrates to the corresponding N-carbamoyl-β-amino acids by three recombinant D-hydantoinases and several bacterial strains was tested. All applied recombinant D-hydantoinases and eight bacterial isolates catalyzed the conversion of PheDU to N-carbamoyl-β-phenylalanine (NCβPhe). Some of these biocatalysts showed an enantioselectivity for either the D- or the L-PheDU enantiomer. The second dihydropyrimidinase substrate pClPheDU was hydrolyzed by all three recombinant D-hydantoinases and six of the wild-type strains. To our knowledge, this is the first dihydropyrimidinase activity reported with this aryl-substituted dihydropyrimidine. For selected biocatalysts, hydantoinase activity towards aryl-substituted hydantoins was demonstrated as well. However, none of the bacterial strains tested so far exhibited any carbamoylase activity towards NCβPhe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号