首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Human tissue factor pathway inhibitor-2 (TFPI-2) is a matrix-associated Kunitz-type serine proteinase inhibitor that is secreted by all cells of the vasculature, and presumably plays a role in the regulation of plasmin-mediated matrix remodeling. In this report, we describe the cloning and expression of a full-length cDNA for bovine TFPI-2 that exhibits 72% sequence identity with that of human TFPI-2. Following a 22 residue signal peptide, the mature protein contains 212 amino acids with 18 cysteines, three putative N-glycosylation sites, and one putative O-glycosylation site. The deduced sequence of mature bovine TFPI-2 revealed a short acidic amino-terminal region, three tandem Kunitz-type domains, and a carboxy-terminal tail highly enriched in basic amino acids. Recombinant bovine TFPI-2 was expressed in HEK 293 cells and resolved into two isoforms, designated as alpha-TFPI-2 (M(r) 33 kDa) and beta-TFPI-2 (M(r) 31 kDa), which presumably represent differentially glycosylated forms of the inhibitor. Similar to human TFPI-2, both bovine TFPI-2 isoforms exhibited strong inhibitory activity towards trypsin and plasmin, and weak inhibitory activity towards the factor VIIa-tissue factor complex.  相似文献   

3.
Presenilin-associated protein (PSAP) was originally identified as a PS1-associated, PDZ domain protein. In a subsequent study, PSAP was found to be a mitochondrial apoptotic molecule. In this study, we cloned the PSAP gene and found that it is composed of 12 exons and localizes on chromosome 6. To better understand the structure and function of PSAP, we have generated a series of antibodies that recognize different regions of PSAP. Using these antibodies, we found that PSAP is expressed in four isoforms as a result of differential splicing of exon 8 in addition to the use of either the first or the second ATG codon as the start codon. We also found that all these isoforms are localized in the mitochondria and are pro-apoptotic. Furthermore, our data revealed that the PDZ domain and N-terminal fragment are required for the pro-apoptotic activity of PSAP.  相似文献   

4.
5.
Human tissue factor pathway inhibitor-2 (TFPI-2)/matrix-associated serine protease inhibitor (MSPI), a Kunitz-type serine protease inhibitor, inhibits plasmin, trypsin, chymotrypsin, plasma kallikrein, cathepsin G, and factor VIIa-tissue factor complex. The mature protein has a molecular mass of 32-33 kDa, but exists in vivo as two smaller, underglycosylated species of 31 and 27 kDa. TFPI-2/MSPI triplet is synthesized and secreted by a variety of cell types that include epithelial, endothelial, and mesenchymal cells. Because the majority (75-90%) of TFPI-2/MSPI is associated with the extracellular matrix (ECM), we examined which components of the ECM bind TFPI-2/MSPI. We found that TFPI-2/MSPI bound specifically to heparin and dermatan sulfate. Interaction of these two glycosaminoglycans (GAGs) with TFPI-2/MSPI involved one or more common protein domains, as evidenced by cross-competition experiments. However, binding affinity for TFPI-2/MSPI with heparin was 250-300 times greater than that for TFPI-2/MSPI with dermatan sulfate. Binding of TFPI-2/MSPI to GAGs was inhibited by NaCl or arginine but not by glucose, mannose, galactose, 6-aminohexanoic acid, or urea, suggesting that arginine-mediated ionic interactions participate in the GAG binding of TFPI-2/MSPI. This supposition was supported by the observation that only NaCl or arginine could elute the TFPI-2/MSPI protein triplet from an ECM derived from human dermal fibroblasts. Reduced TFPI-2/MSPI did not bind to heparin, suggesting that proper disulfide pairings and conformation are essential for matrix binding. To determine whether heparin modulates the activity of TFPI-2/MSPI, we determined the rate of inhibition of plasmin by the inhibitor with and without heparin and found that TFPI-2/MSPI is more active in the presence of heparin. Collectively, our results demonstrate that conformation-dependent arginine-mediated ionic interactions are responsible for the TFPI-2/MSPI triplet binding to fibroblast ECM, heparin, and dermatan sulfate and that heparin augmented the rate of inhibition of plasmin by TFPI-2/MSPI.  相似文献   

6.
Presenilin 1-associated protein (PSAP) was first identified as a protein that interacts with presenilin 1. It was later reported that PSAP is a mitochondrial protein that induces apoptosis when overexpressed in cultured cells. PSAP is also known as mitochondrial carrier homolog 1 (Mtch1). In this study, we show that there are two proapoptotic PSAP isoforms generated by alternative splicing that differ in the length of a hydrophilic loop located between two predicted transmembrane domains. Using RT-PCR and Western blot assays, we determined that both isoforms are expressed in human and rat tissues as well as in culture cells. Our results indicate that PSAP is an integral mitochondrial outer membrane protein, although it contains a mitochondrial carrier domain conserved in several inner membrane carriers, which partially overlaps one of the predicted transmembrane segments. Deletion of this transmembrane segment impairs mitochondrial import of PSAP. Replacement of this segment with each of two transmembrane domains, with opposite membrane orientations, from an unrelated protein indicated that one of them allowed mitochondrial localization of the PSAP mutant, whereas the other one did not. Our interpretation of these results is that PSAP contains multiple mitochondrial targeting motifs dispersed along the protein but that a transmembrane domain in the correct position and orientation is necessary for membrane insertion. The amino acid sequence within this transmembrane domain may also be important. Furthermore, two independent regions in the amino terminal side of the protein are responsible for its proapoptotic activity. Possible implications of these findings in PSAP function are discussed. presenilin 1-associated protein-mitochondrial carrier homolog 1; mitochondria; apoptosis; presenilin; Alzheimer's disease  相似文献   

7.
8.
ADAMTS1 is an extracellular metalloproteinase known to participate in a variety of biological processes that includes inflammation, angiogenesis, and development of the urogenital system. Many of its functions rely on its catalytic activity, which thus far has been limited to the cleavage of the matrix proteoglycans aggrecan and versican. However, it is likely that other substrates exist. Using a yeast two-hybrid screen, we identified the Kunitz-type inhibitor, tissue factor pathway inhibitor-2 (TFPI-2), as a binding partner of ADAMTS1. The interaction was confirmed by several biochemical and cell-based assays. In addition, our studies revealed alterations in the pattern of TFPI-2-secreted isoforms and in its extracellular location caused by the specific action of ADAMTS1. Interestingly, we found that TFPI-2 is a novel substrate of ADAMTS1. The cleavage removes a protease-sensitive C-terminal region in TFPI-2, altering its binding properties. The proposed role of TFPI-2 as a maintenance factor of extracellular remodeling suggests the indirect function of ADAMTS1 as an additional homeostatic player by its ability to alter the extracellular location of TFPI-2 and, therefore, to disrupt the remodeling machinery, a phenomenon directly associated to pathologies such as atherosclerosis and tumor progression.  相似文献   

9.
10.
The serine proteinase inhibitor tissue factor pathway inhibitor-2 (TFPI-2) inhibits the tissue factor-factor VIIa complex and thereby impairs factor Xa and subsequently thrombin generation. Here we show that thrombin itself up-regulates TFPI-2 mRNA and protein expression in human liver myofibroblasts, a cell type shown to express high levels of TFPI-2 (Neaud, V., Hisaka, T., Monvoisin, A., Bedin, C., Balabaud, C., Foster, D. C., Desmoulière, A., Kisiel, W., and Rosenbaum, J. (2000) J. Biol. Chem. 275, 35565-35569). This effect required thrombin catalytic activity, as shown by its abolition with hirudin. Although the thrombin effect could be mimicked by agonists of both protease-activated receptor (PAR)-1 and PAR-4, it was largely blocked by a PAR-1 blocking antibody. Transactivation of the epidermal growth factor (EGF) receptor has been reported as a common event in thrombin signaling. However, thrombin did not detectably transactivate the EGF receptor in liver myofibroblasts, and blocking the EGF receptor did not affect TFPI-2 induction. On the other hand, thrombin increased the expression of cyclooxygenase-2 (COX-2) mRNA via a MAPK-dependent pathway, and a specific COX-2 inhibitor abolished the effect of thrombin on TFPI-2 expression. Thus, thrombin, through PAR-1 signaling, up-regulates the synthesis of TFPI-2 via a MAPK/COX-2-dependent pathway. The up-regulation of TFPI-2 expression by thrombin could in turn down-regulate thrombin generation and contribute to limit blood coagulation.  相似文献   

11.
TFPI-2对人肝癌细胞生长增殖、凋亡及AFP合成的影响   总被引:1,自引:0,他引:1  
目的: 探讨TFPI-2基因对人肝癌细胞Hep3B生长增殖、凋亡及甲胎蛋白AFP表达的影响。 方法: 将重组质粒PCDNA3.1-TFPI-2转染Hep3B细胞并经G418稳定筛选后,RT-PCR和Western blot检测转染前后TFPI-2 mRNA和蛋白表达水平,采用CCK-8法、生长曲线观察TFPI-2对人肝癌细胞Hep3B生长增殖的影响,通过平板克隆形成实验观察单个细胞的增殖能力,RT-PCR检测AFP mRNA的表达,并用电化学发光法测定培养上清液中甲胎蛋白AFP含量,流式细胞仪检测细胞早晚期凋亡情况。 结果: 转染成功的Hep3B细胞检测到TFPI-2 mRNA和蛋白的表达;与转染空载体及未转染的细胞相比,转染TFPI-2的细胞生长增殖能力明显减弱;AFP mRNA表达抑制率为16.51%,AFP蛋白分泌明显低于对照组(P<0.01);流式细胞术检测转染TFPI-2的Hep3B细胞早期凋亡率明显增加(24.03%±7.28% vs 8.77%±3.66%)。 结论: TFPI-2表达可显著抑制肝癌细胞生长和AFP的表达,同时还能诱导细胞早期凋亡。为进一步探讨靶向TFPI-2的肝癌基因治疗提供了实验依据。  相似文献   

12.
13.
We have previously shown that human liver myofibroblasts promote in vitro invasion of human hepatocellular carcinoma (HCC) cells through a hepatocyte growth factor (HGF)/urokinase/plasmin-dependent mechanism. In this study, we demonstrate that myofibroblasts synthesize the serine proteinase inhibitor tissue factor pathway inhibitor-2 (TFPI-2). Despite the fact that recombinant TFPI-2 readily inhibits plasmin, we show that it potentiates HGF-induced invasion of HCC cells and is capable of inducing invasion on its own. Furthermore, HCC cells stably transfected with a TFPI-2 expression vector became spontaneously invasive. HCC cells express tissue factor and specifically factor VII. Addition of an antibody to factor VII abolished the pro-invasive effect of TFPI-2. We suggest that TFPI-2 induces invasion following binding to a tissue factor-factor VIIa complex preformed on HCC cells. Our data thus demonstrate an original mechanism of cell invasion that may be specific for liver tumor cells.  相似文献   

14.
Recent studies have suggested a possible role for presenilin proteins in apoptotic cell death observed in Alzheimer's disease. The mechanism by which presenilin proteins regulate apoptotic cell death is not well understood. Using the yeast two-hybrid system, we previously isolated a novel protein, presenilin-associated protein (PSAP) that specifically interacts with the C terminus of presenilin 1 (PS1), but not presenilin 2 (PS2). Here we report that PSAP is a mitochondrial resident protein sharing homology with mitochondrial carrier protein. PSAP was detected in a mitochondria-enriched fraction, and PSAP immunofluorescence was present in a punctate pattern that colocalized with a mitochondrial marker. More interestingly, overexpression of PSAP caused apoptotic death. PSAP-induced apoptosis was documented using multiple independent approaches, including membrane blebbing, chromosome condensation and fragmentation, DNA laddering, cleavage of the death substrate poly(ADP-ribose) polymerase, and flow cytometry. PSAP-induced cell death was accompanied by cytochrome c release from mitochondria and caspase-3 activation. Moreover, the general caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone, which blocked cell death, did not block the release of cytochrome c from mitochondria caused by overexpression of PSAP, indicating that PSAP-induced cytochrome c release was independent of caspase activity. The mitochondrial localization and proapoptotic activity of PSAP suggest that it is an important regulator of apoptosis.  相似文献   

15.
Tissue factor pathway inhibitor-2 (TFPI-2) is a Kunitz-type serine proteinase inhibitor associated with the extracellular matrices of vascular cells. A recent report provided in vitro evidence that TFPI-2 may be a novel inhibitor of the matrix metalloproteinases MMP-1, MMP-13, MMP-2 and MMP-9. In studies aimed at identifying the structural elements of TFPI-2 mediating the putative inhibition of the above MMPs, we re-examined the ability of native TFPI-2 to form complexes with MMP-2, MMP-9 and MMP-1, as well as assess its ability to inhibit the proteolytic activity of the interstitial collagenase, activated MMP-1. We report here that TFPI-2 failed to form complexes with MMP-2, MMP-9 and MMP-1 as revealed in immunoprecipitation and ligand blotting studies. In addition, TFPI-2 had no influence on the proteolytic activity of activated MMP-1 towards triple-helical collagen. These data provide presumptive evidence that TFPI-2 does not bind to MMP-2, MMP-9 and MMP-1, or regulate MMP-1, in the extracellular matrix.  相似文献   

16.
Tissue factor pathway inhibitor 2 (TFPI-2) is a structural homologue of TFPI, a potent inhibitor of tissue factor (TF)-mediated coagulation. Although TFPI-2 has been identified at sequence level in several fish species, no study on piscine TFPI-2 has been documented. In this report, we identified and analyzed a TFPI-2 homologue, SoTFPI2, from red drum Sciaenops ocellatus. The open reading frame of SoTFPI2 is 681 bp, which encodes a 226-residue protein that shares 59.2–82.3% overall sequence identities with known fish TFPI-2. SoTFPI2 possesses three tandem Kunitz domains and is negatively charged at the N-terminus and positively charged at the C-terminus. Expression of SoTFPI2 was detected, in increasing order, in spleen, muscle, gill, brain, liver, kidney, blood, and heart. Bacterial challenge and lipopolysaccharide treatment significantly upregulated SoTFPI2 expression in kidney in time-dependent manners. Recombinant SoTFPI2 purified from Escherichia coli inhibits the proteolytic activity of trypsin and exhibits bactericidal effect on a fish pathogen. Take together, these results indicate that SoTFPI2 is a biologically active serine protease inhibitor with antibacterial property and is likely to play a role in anti-bacterial infection.  相似文献   

17.
In 2002, Caspi and colleagues provided the first epidemiological evidence that genotype may moderate individuals' responses to environmental determinants. However, in a correlational study great care must be taken to ensure the proper estimation of the causal relationship. Here, a randomized experiment was performed to test the hypothesis that the MAOA gene promoter polymorphism (MAOA‐LPR) interacts with environmental adversity in determining aggressive behavior using laboratory analogs of real‐life conditions. A sample of 57 Caucasian male students of Catalan and Spanish origin was recruited at the University of Barcelona. Ostracism, or social exclusion, was induced as environmental adversity using the Cyberball software. Laboratory aggression was assessed with the Point Subtraction Aggression Paradigm (PSAP), which was used as an analog of antisocial behavior. We also measured aggressiveness by means of the reduced version of the Aggression Questionnaire. The MAOA‐LPR polymorphism showed a significant effect on the number of aggressive responses in the PSAP (F1,53 = 4.63, P = 0.03, partial η2 = 0.08), as well as social exclusion (F1,53 = 8.03, P = 0.01, partial η2 = 0.13). Most notably, however, we found that the MAOA‐LPR polymorphism interacts significantly with social exclusion in order to provoke aggressive behavior (F1,53 = 4.42, P = 0.04, partial η2 = 0.08), remarkably, the low‐activity allele of the MAOA‐LPR polymorphism carriers in the ostracized group show significantly higher aggression scores than the rest. Our results support the notion that gene–environment interactions can be successfully reproduced within a laboratory using analogs and an appropriate design. We provide guidelines to test gene–environment interactions hypotheses under controlled, experimental settings.  相似文献   

18.
19.
Tissue factor pathway inhibitor-2 (TFPI-2) is a homologue of TFPI-1 and contains three Kunitz-type domains and a basic C terminus region. The N-terminal domain of TFPI-2 is the only inhibitory domain, and it inhibits plasma kallikrein, factor XIa, and plasmin. However, plasma TFPI-2 levels are negligible (≤20 pm) in the context of influencing clotting or fibrinolysis. Here, we report that platelets contain significant amounts of TFPI-2 derived from megakaryocytes. We employed RT-PCR, Western blotting, immunohistochemistry, and confocal microscopy to determine that platelets, MEG-01 megakaryoblastic cells, and bone marrow megakaryocytes contain TFPI-2. ELISA data reveal that TFPI-2 binds factor V (FV) and partially B-domain-deleted FV (FV-1033) with Kd ∼9 nm and binds FVa with Kd ∼100 nm. Steady state analysis of surface plasmon resonance data reveal that TFPI-2 and TFPI-1 bind FV-1033 with Kd ∼36–48 nm and bind FVa with Kd ∼252–456 nm. Further, TFPI-1 (but not TFPI-1161) competes with TFPI-2 in binding to FV. These data indicate that the C-terminal basic region of TFPI-2 is similar to that of TFPI-1 and plays a role in binding to the FV B-domain acidic region. Using pull-down assays and Western blots, we show that TFPI-2 is associated with platelet FV/FVa. TFPI-2 (∼7 nm) in plasma of women at the onset of labor is also, in part, associated with FV. Importantly, TFPI-2 in platelets and in plasma of pregnant women inhibits FXIa and tissue-type plasminogen activator-induced clot fibrinolysis. In conclusion, TFPI-2 in platelets from normal or pregnant subjects and in plasma from pregnant women binds FV/Va and regulates intrinsic coagulation and fibrinolysis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号