首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Because of the advantages of low cost, good electrical conductivity and high oxidation resistance, nitrogen-doped carbon (NDC) materials have a potential to replace noble metals in microbial fuel cells (MFCs) for wastewater treatment. In spite of a large volume of studies on NDC materials as catalysts for oxygen reduction reaction, the influence of sulfide on NDC materials has not yet been explicitly reported so far. In this communication, nitrogen-doped carbon powders (NDCP) were prepared by treating carbon powders in nitric acid under reflux condition. Sodium sulfide (Na(2)S) was added to the cathodic electrolyte to compare its effects on platinum (Pt) and NDCP cathodes. Cell voltages, power density and cathodic potentials were monitored without and with Na(2)S and after Na(2)S was removed. The maximum cell voltage of the MFCs with Pt cathode decreased by 10% in the presence of Na(2)S that did not change the performance of the MFC with NDCP cathode, and the maximum power density of the MFC with NDCP cathode was even 11.3% higher than that with Pt cathode (222.5 ± 8 mW m(-2) vs. 199.7 ± 4 mW m(-2)).  相似文献   

2.
Microbial fuel cells (MFCs) could potentially be utilized for a variety of applications in the future from biosensors to wastewater treatment. However, the amount of costly platinum (Pt) used as a catalyst should be minimized via innovative deposition methods such as sputtering. In addition, alternative and low-cost catalysts, such as cobalt (Co), should be sought. In this study, ultra low Pt or Co cathodes (0.1 mg cm(-2)) were manufactured by plasma sputtering deposition and scanning electron micrographs revealed nano-clusters of metal catalyst in a porous structure favorable to the three-phase heterogeneous catalytic reaction. When operated in single-chamber air-cathode MFCs, sputtered-Co cathodes generated on average the same power as sputtered-Pt cathodes (0.27 mW cell(-1)) and only 27% less than conventional Pt-ink cathodes with a catalyst load 5 times higher (0.5 mg cm(-2)). Finally, microscopy and molecular analyses showed evidence of biocatalysis activity on metal-free cathodes.  相似文献   

3.
Co-naphthalocyanine (CoNPc) was prepared by heat treatment for cathode catalysts to be used in microbial fuel cells (MFCs). Four different catalysts (Carbon black, NPc/C, CoNPc/C, Pt/C) were compared and characterized using XPS, EDAX and TEM. The electrochemical characteristics of oxygen reduction reaction (ORR) were compared by cyclic voltammetry (CV) and linear sweep voltammetry (LSV). The Co-macrocyclic complex improves the catalyst dispersion and oxygen reduction reaction of CoNPc/C. The maximum power of CoNPc/C was 64.7 mW/m2 at 0.25 mA as compared with 81.3 mW/m2 of Pt/C, 29.7 mW/m2 of NPc/C and 9.3 mW/m2 of carbon black when the cathodes were implemented in H-type MFCs. The steady state cell, cathode and anode potential of MFC with using CoNPc/C were comparable to those of Pt/C.  相似文献   

4.
Microbial fuel cells (MFCs) are considered as a promising way for the direct extraction of biochemical energy from biomass into electricity. However, scaling up the process for practical applications and mainly for wastewater treatment is an issue because there is a necessity to get rid of unsustainable platinum (Pt) catalyst. In this study, we developed a low-cost cathode for a MFC making use of sputter-deposited cobalt (Co) as the catalyst and different types of cathode architecture were tested in a single-chambered air-cathode MFC. By sputtering the catalyst on the air-side of the cathode, increased contact with ambient oxygen significantly resulted in higher electricity generation. This outcome was different from previous studies using conventionally-coated Pt cathodes, which was due to the different technology used.  相似文献   

5.
Tugtas AE  Cavdar P  Calli B 《Bioresource technology》2011,102(22):10425-10430
The power production performance of a membrane-less air-cathode microbial fuel cell was evaluated for 53 days. Anode and cathode electrodes and the micro-fiber cloth separator were configured by sandwiching the separator between two electrodes. In addition, the air-facing side of the cathode was covered with a spunbonded olefin sheet instead of polytetrafluoroethylene (PTFE) coating to control oxygen diffusion and water loss. The configuration resulted in a low resistance of about 4Ω and a maximum power density of 750 mW/m2. However, as a result of a gradual decrease in the cathode potential, maximum power density decreased to 280 mW/m2. The declining power output was attributed to loss of platinum catalyst (8.26%) and biomass growth (38.44%) on the cathode. Coulombic efficiencies over 55% and no water leakage showed that the spunbonded olefin sheet covering the air-facing side of the cathode can be a cost-effective alternative to PTFE coating.  相似文献   

6.
A low-cost and effective iron-chelated catalyst was developed as an electrocatalyst for the oxygen reduction reaction (ORR) in microbial fuel cells (MFCs). The catalyst was prepared by pyrolyzing carbon mixed iron-chelated ethylenediaminetetraacetic acid (PFeEDTA/C) in an argon atmosphere. Cyclic voltammetry measurements showed that PFeEDTA/C had a high catalytic activity for ORR. The MFC with a PFeEDTA/C cathode produced a maximum power density of 1122 mW/m2, which was close to that with a Pt/C cathode (1166 mW/m2). The PFeEDTA/C was stable during an operation period of 31 days. Based on X-ray diffraction and X-ray photoelectron spectroscopy measurements, quaternary-N modified with iron might be the active site for the oxygen reduction reaction. The total cost of a PFeEDTA/C catalyst was much lower than that of a Pt catalyst. Thus, PFeEDTA/C can be a good alternative to Pt in MFC practical applications.  相似文献   

7.
Activated carbon (AC) air-cathodes are inexpensive and useful alternatives to Pt-catalyzed electrodes in microbial fuel cells (MFCs), but information is needed on their long-term stability for oxygen reduction. AC cathodes were constructed with diffusion layers (DLs) with two different porosities (30% and 70%) to evaluate the effects of increased oxygen transfer on power. The 70% DL cathode initially produced a maximum power density of 1214±123 mW/m(2) (cathode projected surface area; 35±4 W/m(3) based on liquid volume), but it decreased by 40% after 1 year to 734±18 mW/m(2). The 30% DL cathode initially produced less power than the 70% DL cathode, but it only decreased by 22% after 1 year (from 1014±2 mW/m(2) to 789±68 mW/m(2)). Electrochemical tests were used to examine the reasons for the degraded performance. Diffusion resistance in the cathode was found to be the primary component of the internal resistance, and it increased over time. Replacing the cathode after 1 year completely restored the original power densities. These results suggest that the degradation in cathode performance was due to clogging of the AC micropores. These findings show that AC is a cost-effective material for oxygen reduction that can still produce ~750 mW/m(2) after 1 year.  相似文献   

8.
Microbial fuel cells (MFCs) have been used to generate electricity from various organic compounds such as acetate, glucose, and lactate. We demonstrate here that electricity can be produced in an MFC using cellulose as the electron donor source. Tests were conducted using two-chambered MFCs, the anode medium was inoculated with mixed or pure culture of cellulose-degrading bacteria Nocardiopsis sp. KNU (S strain) or Streptomyces enissocaesilis KNU (K strain), and the catholyte in the cathode compartment was 50mM ferricyanide as catholyte. The power density for the mixed culture was 0.188mW (188mW/m(2)) at a current of 0.5mA when 1g/L cellulose was used. However, the power density decreased as the cellulose concentration in the anode compartment decreased. The columbic efficiencies (CEs) ranged from 41.5 to 33.4%, corresponding to an initial cellulose concentration of 0.1-1.0g/L. For the pure culture, cellobioase enzyme was added to increase the conversion of cellulose to simple sugars, since electricity production is very low. The power densities for S and K strain pure cultures with cellobioase were 162mW/m(2) and 145mW/m(2), respectively. Cyclic voltammetry (CV) experiments showed the presence of peaks at 380, 500, and 720mV vs. Ag/AgCl for the mixed bacterial culture, indicating its electrochemical activity without an external mediator. Furthermore, this MFC system employs a unique microbial ecology in which both the electron donor (cellulose) and the electron acceptor (carbon paper) are insoluble.  相似文献   

9.
The chemical processes occurring on the surface of cathode materials during battery cycling play a crucial role in determining battery's performance. However, the understanding of such surface chemistry is far from clear due to the complexity of redox chemistry during battery charge/discharge. Through intensive aberration corrected STEM investigation on ten layered oxide cathode materials, two important findings on the pristine oxides are reported. First, Ni and Co show strong plane selectivity when building up their respective surface segregation layers (SSLs). Specifically, Ni‐SSL is exclusively developed on (200)m facet in Li–Mn‐rich oxides (monoclinic C2/m symmetry) and on (012)h facet in Mn–Ni equally rich oxides (hexagonal R‐3m symmetry), while Co‐SSL has a strong preference to (20?2)m plane with minimal Co‐SSL also developed on some other planes in Li–Mn‐rich cathodes. Structurally, Ni‐SSLs tend to form spinel‐like lattice while Co‐SSLs are in a rock‐salt‐like structure. Second, by increasing Ni concentration in these layered oxides, Ni and Co SSLs can be suppressed and even eliminated. The findings indicate that Ni and Co SSLs are tunable through controlling particle morphology and oxide composition, which opens up a new way for future rational design and synthesis of cathode materials.  相似文献   

10.
Electricity can be directly generated by bacteria in microbial fuel cells (MFCs) from a variety of biodegradable substrates, including cellulose. Particulate materials have not been extensively examined for power generation in MFCs, but in general power densities are lower than those produced with soluble substrates under similar conditions likely as a result of slow hydrolysis rates of the particles. Cellulases are used to achieve rapid conversion of cellulose to sugar for ethanol production, but these enzymes have not been previously tested for their effectiveness in MFCs. It was not known if cellulases would remain active in an MFC in the presence of exoelectrogenic bacteria or if enzymes might hinder power production by adversely affecting the bacteria. Electricity generation from cellulose was therefore examined in two-chamber MFCs in the presence and absence of cellulases. The maximum power density with enzymes and cellulose was 100 +/- 7 mW/m(2) (0.6 +/- 0.04 W/m(3)), compared to only 12 +/- 0.6 mW/m(2) (0.06 +/- 0.003 W/m(3)) in the absence of the enzymes. This power density was comparable to that achieved in the same system using glucose (102 +/- 7 mW/m(2), 0.56 +/- 0.038 W/m(3)) suggesting that the enzyme successfully hydrolyzed cellulose and did not otherwise inhibit electricity production by the bacteria. The addition of the enzyme doubled the Coulombic efficiency (CE) to CE = 51% and increased COD removal to 73%, likely as a result of rapid hydrolysis of cellulose in the reactor and biodegradation of the enzyme. These results demonstrate that cellulases do not adversely affect exoelectrogenic bacteria that produce power in an MFC, and that the use of these enzymes can increase power densities and reactor performance.  相似文献   

11.
Electricity production from acetate, glucose and xylose with humic acid as mediator was investigated in two chambers microbial fuel cells (MFCs). Acetate produced the highest voltage (570 mV with 1000 Omega) and maximum power density (P(maxd)=123 mW/m(2)) due to a simpler metabolism than with glucose and xylose. Glucose and xylose resulted in P(maxd) of 28 mW/m(2) and 32 mW/m(2) at lower voltage of 380 mV and 414 mV, respectively. P(maxd) increased by 84% and 30%, for glucose and xylose respectively, when humic acid (2g/l) was present in the medium. No significant effect was found with acetate since the internal resistance possessed a limiting effect. The increase of P(maxd) due to humic acid presence was attributed to its ability to act as mediator. Even though pH decreased to 5 with glucose and xylose, due to production of acetate and propionate, the voltage remained on the same level of 250-350 mV.  相似文献   

12.
In microbial fuel cells (MFCs) bacteria generate electricity by mediating the oxidation of organic compounds and transferring the resulting electrons to an anode electrode. The objective of this study was to test the possibility of generating electricity with rumen microorganisms as biocatalysts and cellulose as the electron donor in two-compartment MFCs. The anode and cathode chambers were separated by a proton exchange membrane and graphite plates were used as electrodes. The medium in the anode chamber was inoculated with rumen microorganisms, and the catholyte in the cathode compartment was ferricyanide solution. Maximum power density reached 55 mW/m(2) (1.5 mA, 313 mV) with cellulose as the electron donor. Cellulose hydrolysis and electrode reduction were shown to support the production of current. The electrical current was sustained for over 2 months with periodic cellulose addition. Clarified rumen fluid and a soluble carbohydrate mixture, serving as the electron donors, could also sustain power output. Denaturing gradient gel electrophoresis (DGGE) of PCR amplified 16S rRNA genes revealed that the microbial communities differed when different substrates were used in the MFCs. The anode-attached and the suspended consortia were shown to be different within the same MFC. Cloning and sequencing analysis of 16S rRNA genes indicated that the most predominant bacteria in the anode-attached consortia were related to Clostridium spp., while Comamonas spp. abounded in the suspended consortia. The results demonstrated that electricity can be generated from cellulose by exploiting rumen microorganisms as biocatalysts, but both technical and biological optimization is needed to maximize power output.  相似文献   

13.
Simultaneous organics removal and bio-electrochemical denitrification using a microbial fuel cell (MFC) reactor were investigated in this study. The electrons produced as a result of the microbial oxidation of glucose in the anodic chamber were transferred to the anode, which then flowed to the cathode in the cathodic chamber through a wire, where microorganisms used the transferred electrons to reduce the nitrate. The highest power output obtained on the MFCs was 1.7 mW/m(2) at a current density of 15 mA/m(2). The maximum volumetric nitrate removal rate was 0.084 mg NO(3)(-)-N cm(-2) (electrode surface area) day(-1). The coulombic efficiency was about 7%, which demonstrated that a substantial fraction of substrate was lost without current generation.  相似文献   

14.
Power generation in microbial fuel cells (MFCs) is a function of the surface areas of the proton exchange membrane (PEM) and the cathode relative to that of the anode. To demonstrate this, the sizes of the anode and cathode were varied in two-chambered MFCs having PEMs with three different surface areas (A PEM=3.5, 6.2, or 30.6 cm2). For a fixed anode and cathode surface area (A An=A Cat=22.5 cm2), the power density normalized to the anode surface area increased with the PEM size in the order 45 mW/m2 (A PEM=3.5 cm2), 68 mW/m2 (A PEM=6.2 cm2), and 190 mW/m2 (A PEM=30.6 cm2). PEM surface area was shown to limit power output when the surface area of the PEM was smaller than that of the electrodes due to an increase in internal resistance. When the relative cross sections of the PEM, anode, and cathode were scaled according to 2A Cat=APEM=2A An, the maximum power densities of the three different MFCs, based on the surface area of the PEM (A PEM=3.5, 6.2, or 30.6 cm2), were the same (168±4.53 mW/m2). Increasing the ionic strength and using ferricyanide at the cathode also increased power output.  相似文献   

15.
Pentose and humic acids (HA) are the main components of hydrolysates, the liquid fraction produced during thermohydrolysis of lignocellulosic material. Electricity generation integrated with xylose (typical pentose) degradation as well as the effect of HA on electricity production in microbial fuel cells (MFCs) was examined. Without HA addition the maximum power density increased from 39.5 mW/m(2) to 83 mW/m(2) when initial xylose concentrations increased from 1.5 to 30 mM, while coulombic efficiency ranged from 13.5% to 52.4% for xylose concentrations of 15 and 0.5 mM, respectively. Compared to controls where HAs were not added, addition of commercial HA resulted in increase of power density and coulombic efficiency, which ranged from 7.5% to 67.4% and 24% to 92.6%, respectively. Digested manure wastewater (DMW) was tested as potential mediator for power generation due to its content of natural HA, and although it could produce higher coulombic efficiency namely 32.2% than the control of 18.3%, showed lower power density which was approx. 57 mW/m(2) in comparison to power density of the control which was 69 mW/m(2). Presence of commercial HA or DMW in the anode chamber resulted in faster xylose degradation and formation of more oxidized products (acetate and formate) as well as less reduced products (lactate and ethanol) compared to the controls. The reduced power generation in the presence of DMW was attributed to the presence of bacterial inhibitors such as phenolic compounds. Therefore, new feedstocks for MFCs, containing both mediators and substrates, such as lignocellulose hydrolysates should be considered for their applicability in MFCs.  相似文献   

16.
Feng Y  Yang Q  Wang X  Liu Y  Lee H  Ren N 《Bioresource technology》2011,102(1):411-415
Biodiesel production through transesterification of lipids generates large quantity of biodiesel waste (BW) containing mainly glycerin. BW can be treated in various ways including distillation to produce glycerin, use as substrate for fermentative propanediol production and discharge as wastes. This study examined microbial fuel cells (MFCs) to treat BW with simultaneous electricity generation. The maximum power density using BW was 487 ± 28 mW/m2 cathode (1.5 A/m2 cathode) with 50 mM phosphate buffer solution (PBS) as the electrolyte, which was comparable with 533 ± 14 mW/m2 cathode obtained from MFCs fed with glycerin medium (COD 1400 mg/L). The power density increased from 778 ± 67 mW/m2 cathode using carbon cloth to 1310 ± 15 mW/m2 cathode using carbon brush as anode in 200 mM PBS electrolyte. The power density was further increased to 2110 ± 68 mW/m2 cathode using the heat-treated carbon brush anode. Coulombic efficiencies (CEs) increased from 8.8 ± 0.6% with carbon cloth anode to 10.4 ± 0.9% and 18.7 ± 0.9% with carbon brush anode and heat-treated carbon brush anode, respectively.  相似文献   

17.
In this study, a two-compartment continuous flow microbial fuel cell (MFC) reactor was used to compare the efficiencies of cathode oxygenation by air and by hydrogen peroxide. The MFC reactor had neither a proton-selective membrane nor an electron transfer mediator. At startup, the cathodic compartment was continuously aerated and the anodic compartment was fed with a glucose solution. An increase of electrical power generation from 0.008 to 7.2 mW m(-2) of anode surface with a steady-state potential of 215-225 mV was observed within a period of 12 days. The performance of the air-oxygenated MFC reactor progressively declined over time because of biofilm proliferation in the cathodic compartment. Oxygenation of the cathodic compartment using 300 mL d(-1) of 0.3% hydrogen peroxide solution resulted in a power density of up to 22 mW m(-2) (68.2 mA m(-2)) of anode surface at a potential of 340-350 mV. The use of H2O2 for oxygenation was found to improve the long-term stability of the MFC reactor.  相似文献   

18.
Solid phase microbial fuel cells (SMFC; graphite electrodes; open-air cathode) were designed to evaluate the potential of bioelectricity production by stabilizing composite canteen based food waste. The performance was evaluated with three variable electrode-membrane assemblies. Experimental data depicted feasibility of bioelectricity generation from solid state fermentation of food waste. Distance between the electrodes and presence of proton exchange membrane (PEM) showed significant influence on the power yields. SMFC-B (anode placed 5 cm from cathode-PEM) depicted good power output (463 mV; 170.81 mW/m2) followed by SMFC-C (anode placed 5 cm from cathode; without PEM; 398 mV; 53.41 mW/m2). SMFC-A (PEM sandwiched between electrodes) recorded lowest performance (258 mV; 41.8 mW/m2). Sodium carbonate amendment documented marked improvement in power yields due to improvement in the system buffering capacity. SMFCs operation also documented good substrate degradation (COD, 76%) along with bio-ethanol production. The operation of SMFC mimicked solid-sate fermentation which might lead to sustainable solid waste management practices.  相似文献   

19.
A new one-compartment fuel cell was composed of a rubber bunged bottle with a center-inserted anode and a window-mounted cathode containing an internal, proton-permeable porcelain layer. This fuel cell design was less expensive and more practical than the conventional two-compartment system, which requires aeration and a ferricyanide solution in the cathode compartment. Three new electrodes containing bound electron mediators including a Mn(4+)-graphite anode, a neutral red (NR) covalently linked woven graphite anode, and an Fe(3+)-graphite cathode were developed that greatly enhanced electrical energy production (i.e., microbial electron transfer) over conventional graphite electrodes. The potentials of these electrodes measured by cyclic voltametry at pH 7.0 were (in volts): +0.493 (Fe(3+)-graphite); +0.15 (Mn(4+)-graphite); and -0.53 (NR-woven graphite). The maximal electrical productivities obtained with sewage sludge as the biocatalyst and using a Mn(4+)-graphite anode and a Fe(3+)-graphite cathode were 14 mA current, 0.45 V potential, 1,750 mA/m(2) current density, and 788 mW/m(2) of power density. With Escherichia coli as the biocatalyst and using a Mn(4+)-graphite anode and a Fe(3+)-graphite cathode, the maximal electrical productivities obtained were 2.6 mA current, 0.28 V potential, 325 mA/m(2) current density, and 91 mW/m(2) of power density. These results show that the amount of electrical energy produced by microbial fuel cells can be increased 1,000-fold by incorporating electron mediators into graphite electrodes. These results also imply that sewage sludge may contain unique electrophilic microbes that transfer electrons more readily than E. coli and that microbial fuel cells using the new Mn(4+)-graphite anode and Fe(3+)-graphite cathode may have commercial utility for producing low amounts of electrical power needed in remote locations.  相似文献   

20.
Li Z  Yao L  Kong L  Liu H 《Bioresource technology》2008,99(6):1650-1655
To make sure that microbial fuel cells (MFCs) are more convenient to stack, a baffled single-chambered MFC with two groups of electrodes sharing only one anode chamber was designed and the performance was examined. The experiments showed that the prototype MFC generated electrical power (maximum of 133 mW/m(2)) while removing up to 88% of chemical oxygen demand (COD) in 91 h. Volumetric power increased as electrode area per anode compartment volume increased, indicating that the MFC with two groups of electrodes was better than that with one group. Power density as a function of wastewater concentration was modeled according to saturation kinetics, with a maximum power density of P(max)=164 mW/m(2) (fixed 100 Omega resistor) and half-saturation concentration of K(s)=259 mg/l. The hydraulic retention time (HRT) was examined as a factor influencing the power generation. When it was 15.5h, the voltage and the power density reached the maximum 0.413 V and 108 mW/m(2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号