首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Data on polymorphism of the angiotensin-converting enzyme (ACE) and endothelial cell nitric oxide synthase (NOS3) genes in patients having arterial hypertension (AH) with or without left ventricular hypertrophy (LVH) and those with hypertrophic cardiomyopathy (HCM) are presented. An association between polymorphism for the ACE and NOS3 loci and the LVH index among AH patients with LVH and HCM was shown. In AH patients, an association between the NOS3 locus polymorphism and some parameters of blood pressure was revealed. Possible relationships between the ACE and NOS3 polymorphisms and the clinical manifestation of the LVH and AH are discussed.  相似文献   

2.
Nitric oxide (NO) has been suggested to play a key role in the pathogenesis of pulmonary hypertension (PH). To determine which mechanism exists to affect NO production, we examined the concentration of endogenous nitric oxide synthase (NOS) inhibitors and their catabolizing enzyme dimethylarginine dimethylaminohydrolase (DDAH) activity and protein expression (DDAH1 and DDAH2) in pulmonary artery endothelial cells (PAECs) of rats given monocrotaline (MCT). We also measured NOS and arginase activities and NOS protein expression. Twenty-four days after MCT administration, PH and right ventricle (RV) hypertrophy were established. Endothelium-dependent, but not endothelium-independent, relaxation and cGMP production were significantly impaired in pulmonary artery specimens of MCT group. The constitutive NOS activity and protein expression in PAECs were significantly reduced in MCT group, whereas the arginase, which shares l-arginine as a common substrate with NOS, activity was significantly enhanced in PAECs of MCT group. The contents of monomethylarginine (MMA) and asymmetric dimethylarginine (ADMA), but not symmetric dimethylarginine (SDMA), were increased in PAECs of MCT group. The DDAH activity and DDAH1, but not DDAH2, protein expression were significantly reduced in PAECs of MCT group. These results suggest that the impairment of cGMP production as a marker of NO production is possibly due to the blunted endothelial NOS activity resulting from the downregulation of endothelial NOS protein, accumulation of endogenous NOS inhibitors, and accelerated arginase activity in PAECs of PH rats. The decreased overall DDAH activity accompanied by the downregulation of DDAH1 would bring about the accumulation of endogenous NOS inhibitors.  相似文献   

3.
Endothelial nitric oxide synthase (eNOS) produces nitric oxide (NO) which, after diffusing into vascular smooth muscle cells, activates guanylate cyclase leading to vasodilatation. A polymorphism (894G to T) in exon 7 of the eNOS gene causes the conversion of Glu to Asp in position 298. The recently described crystal structure of the heme domain of eNOS protein shows that Glu298 is fully solvent accessible and distant from regions integral to enzyme function. Searching for phenotypic expression of eNOS gene variants, we genotyped a group of patients with essential hypertension (H, n = 119) for the Glu298Asp polymorphism and compared them with age- and sex-matched healthy normals (N, n = 85). To specify phenotypic expression further, the hypertensive patients were subdivided into one group that responded well to regular antihypertensive therapy (CH, n = 45) and one group that was resistant to the therapy (RH, n = 74). Patients with BP higher than 140/90 mmHg when on adequate lifestyle modification and triple-combination therapy (including diuretics) were considered resistant. In RH and H groups, a significantly higher frequency of T alleles (P = 0.022 and P = 0.046, respectively) was found compared to normotonics (N). In well-controlled hypertonics, the same tendency was found, but did not reach statistical significance. The Glu298Asp polymorphism may contribute to the complex pathogenesis of essential hypertension and may be a factor in the resistance of these patients to conventional antihypertensive therapy. The presence of this allele may thus be predictive of the patients' therapeutic response.  相似文献   

4.
Hypertension is an increasing public health problem all over the world. Essential hypertension accounts for more than 90% of cases of hypertension. It is a complex genetic, environmental and demographic trait. New method in molecular biology has been proposed a number of candidate genes, but the linkage or association with hypertension has been problematic (lack of gene-gene and gene-environment interaction). It is well known that genetic influences are more important in younger hypertensives, because children are relatively free from the common environmental factors contributing to essential hypertension. The association studies compare genotype ferquencies of the candidate gene between patient groups and the controls, in pathways known to be involved in blood pressure regulation. This study examined three polymorphisms of these factors encoding genes (ET-1 G+5665T (Lys198Asn), endothelial nitric oxide synthase (eNOS) T-786C promoter polymorphism and 27-bp repeat polymorphism in intron 4) in adolescents with juvenile essential and obesity-associated hypertension. Significant differences were found in the G/T genotype of the ET-1 polymorphism in the hypertensive and obese+hypertensive patients (body mass index (BMI) > 30). A strong association was detected between the BMI and the polymorphism of the ET-1 gene. It seems that ET-1 gene polymorphism plays a role in the development of juvenile hypertension associated with obesity. Although no significant differences were seen in the case of the eNOS promoter polymorphism and the eNOS 4th intron 27-bp repeat polymorphism. It seems that eNOS may play a role, but this is not the main factor in the control of blood pressure; it is rather a fine regulator in this process. This study with adolescents facilitates an understanding of the genetic factors promoting juvenile hypertension and obesity.  相似文献   

5.
6.
Different biochemical pathways and cellular mechanisms play role in the pathogenesis of pulmonary hypertension (PH) in chronic obstructive pulmonary disease (COPD). Alveolar hypoxia is not the only determinant of vascular remodeling, genetic factors are thought to have additive effects. We aimed to investigate the effects of endothelial nitric oxide synthase (eNOS A/B), angiotensin converting enzyme (ACE I/D) and serotonin transporter (5-HTT L/S) gene polymorphisms on development and severity of PH in COPD patients. 50 COPD patients without PH (group 1); 30 COPD patients with PH confirmed with echocardiography (group 2) and 49 healthy subjects (group 3) as control group were included to the study. eNOS A/B, ACE I/D and 5-HTT L/S gene polymorphisms and allele frequencies of COPD patients with and without PH and healthy subjects were determined. Functional parameters and echocardiographic measurements were recorded. Patients with PH were also assessed in two subgroups according to the severity of pulmonary arterial pressure (PAP). Significant differences among three groups in the distribution of 5-HTT genotype and allele frequency were present (respectively p = 0.002; p = 0.021). In group 2, LL and LS genotype rate was 93.3 % with a frequency of 71.2 % L allele and 28.3 % of S allele. 5-HTT LL genotype was present in 88.9 % of patients with PAP ≥50 mmHg significantly (p = 0.012). Other genotype distributions were not significantly different between two subgroups. The results of this study can suggest that COPD patients with L allele of 5-HTT may have higher risk for the development of PH and patients with LL genotype of 5-HTT may present higher PAP. We also demonstrated that eNOS and ACE gene polymorphisms were not associated with the development and severity of PH in our study population. Further studies with larger numbers of patients are needed to explore these relationships.  相似文献   

7.
Endothelial nitric oxide synthase (eNOS)-derived nitric oxide (NO) contributes to hepatic vascular homeostasis. The aim of this study was to examine whether delivery of an adenoviral vector encoding eNOS gene to liver affects vasomotor function in vivo and the mechanism of NO production in vitro. Rats were administered adenoviruses encoding beta-galactosidase (AdCMVLacZ) or eNOS (AdCMVeNOS) via tail vein injection and studied 1 wk later. In animals transduced with AdCMVLacZ, beta-galactosidase activity was increased in the liver, most prominently in hepatocytes. In AdCMVeNOS-transduced animals, eNOS protein levels and catalytic activity were significantly increased. Overexpression of eNOS diminished baseline perfusion pressure and constriction in response to the alpha(1)-agonist methoxamine in the perfused liver. Transduction of cultured hepatocytes with AdCMVeNOS resulted in the targeting of recombinant eNOS to a perinuclear distribution and binding with the NOS-activating protein heat shock protein 90. These events were associated with increased ionomycin-stimulated NO release. In summary, this is the first study to demonstrate successful delivery of the recombinant eNOS gene to liver in vivo and in vitro with ensuing NO production.  相似文献   

8.
Niu W  Qi Y 《PloS one》2011,6(9):e24266

Background

Numerous individually underpowered association studies have been conducted on endothelial nitric oxide synthase (eNOS) genetic variants across different ethnic populations, however, the results are often irreproducible. We therefore aimed to meta-analyze three eNOS widely-evaluated polymorphisms, G894T (rs1799983) in exon 7, 4b/a in intron 4, and T−786C (rs2070744) in promoter region, in association with hypertension from both English and Chinese publications, while addressing between-study heterogeneity and publication bias.

Methods

Data were analyzed using Stata software (version 11.0), and random-effects model was applied irrespective of between-study heterogeneity, which was evaluated by subgroup and meta-regression analyses. Publication bias was weighed using the Egger''s test and funnel plot.

Results

There were total 19284/26003 cases/controls for G894T, and 6890/6858 for 4b/a, and 5346/6392 for T−786C polymorphism. Overall comparison of allele 894T with 894G in all study populations yielded a 16% increased risk for hypertension (odds ratio [OR] = 1.16; 95% confidence interval [95% CI]: 1.07–1.27; P = 0.001), and particularly a 32% increased risk (95% CI: 1.16–1.52; P<0.0005) in Asians and a 40% increased risk (95% CI: 1.19–1.65; P<0.0005) in Chinese. Further subgroup analyses suggested that published languages accounted for the heterogeneity for G894T polymorphism. The overall OR of allele 4a versus 4b was 1.29 (95% CI: 1.13–1.46; P<0.0005) in all study populations, and this estimate was potentiated in Asians (OR = 1.42; 95% CI: 1.16–1.72; P<0.0005). For T−786C, ethnicity-stratified analyses suggested a significantly increased risk for −786C allele (OR = 1.25; 95% CI: 1.06–1.47; P = 0.007) and −786CC genotype (OR = 1.69; 95% CI: 1.20–2.38; P = 0.003) in Whites. As an aside, the aforementioned risk estimates reached significance after Bonferroni correction. Finally, meta-regression analysis on other study-level covariates failed to provide any significance for all polymorphisms.

Conclusion

We, via a comprehensive meta-analysis, ascertained the role of eNOS G894T and 4b/a polymorphisms on hypertension in Asians, and T−786C polymorphism in Whites.  相似文献   

9.
Vascular endothelial cells produce nitric oxide (NO), which contributes to the regulation of blood pressure and regional blood flow. Although Endothelial NO synthase (eNOS) gene polymorphisms have been shown to have a positive association with coronary artery disease, the linkage between eNOS gene polymorphisms and hypertension has been controversial. In the present study, therefore, we identified genotypes for Glu298Asp and variable number tandem repeats in intron 4 (4b/a) in 183 hypertensive and 193 normotensive populations. The Glu298Asp variant had a significant association with hypertension (odds ratio, 1.8; 95% confidence interval, 1.1-3.0). The allele frequencies of 298Asp for Glu298 in hypertensive patients were significantly higher than those in normotensive subjects (0.128 vs 0.080, p<0.05). Diastolic and mean arterial blood pressures were significantly higher in hypertensive subjects with the 298Asp allele than those without the variant allele (p<0.05). However, disequilibrium of 4b/a polymorphism was absent between these two groups. These results suggest that the Glu298Asp variant may be a genetic susceptibility factor for hypertension.  相似文献   

10.
Nitric oxide (NO) derived from nitric oxide synthase (NOS) is an important paracrine effector that maintains vascular tone. The release of NO mediated by NOS isozymes under various O(2) conditions critically determines the NO bioavailability in tissues. Because of experimental difficulties, there has been no direct information on how enzymatic NO production and distribution change around arterioles under various oxygen conditions. In this study, we used computational models based on the analysis of biochemical pathways of enzymatic NO synthesis and the availability of NOS isozymes to quantify the NO production by neuronal NOS (NOS1) and endothelial NOS (NOS3). We compared the catalytic activities of NOS1 and NOS3 and their sensitivities to the concentration of substrate O(2). Based on the NO release rates predicted from kinetic models, the geometric distribution of NO sources, and mass balance analysis, we predicted the NO concentration profiles around an arteriole under various O(2) conditions. The results indicated that NOS1-catalyzed NO production was significantly more sensitive to ambient O(2) concentration than that catalyzed by NOS3. Also, the high sensitivity of NOS1 catalytic activity to O(2) was associated with significantly reduced NO production and therefore NO concentrations, upon hypoxia. Moreover, the major source determining the distribution of NO was NOS1, which was abundantly expressed in the nerve fibers and mast cells close to arterioles, rather than NOS3, which was expressed in the endothelium. Finally, the perivascular NO concentration predicted by the models under conditions of normoxia was paradoxically at least an order of magnitude lower than a number of experimental measurements, suggesting a higher abundance of NOS1 or NOS3 and/or the existence of other enzymatic or nonenzymatic sources of NO in the microvasculature.  相似文献   

11.
Endothelial nitric oxide synthase (eNOS or NOS3) is the main responsible for nitric oxide (NO) production in vascular system and different polymorphisms have been identified in epidemiological studies. Trying to test the eNOS genetic variation in general populations we studied the 27-bp VNTR in intron 4 and G894T substitution in exon 7 markers in 6 Western Mediterranean populations (3 from Iberian Peninsula, 1 from North Africa, and 2 from Sardinia) and a sample from Ivory Coast. The VNTR frequencies in Western Mediterranean and Ivory Coast fit well into the ranges previously described for Europeans and Sub-Saharans respectively, and a typical African allele has been detected in polymorphic frequencies in the Berber sample. The G894T substitution presents the highest frequencies described for the T allele in the North Mediterranean populations. Linkage disequilibrium is present between both markers in all populations except in the Ivory Coast sample. The variation found for these polymorphisms indicates that they may be a useful tool for population studies even at microgeographical level.  相似文献   

12.
13.
BackgroundEndothelial nitric oxide synthase (eNOS) gene polymorphisms have been associated with the pathogenesis of cardiovascular diseases, but few studies have evaluated the role of eNOS haplotypes on the risk and prognosis of heart failure (HF). This prospective study was designed to analyze the impact of three eNOS polymorphisms (T-786C, VNTR4a/b and Glu298Asp) and their haplotypes on the susceptibility and clinical outcomes in HF outpatients with systolic dysfunction.Methods and resultsWe conducted a case-control and a cohort study in which 316 HF patients and 360 healthy controls were recruited from a tertiary care university hospital. DNA was extracted from peripheral blood and eNOS polymorphisms were detected by PCR or PCR-RFLP. Patients were predominantly men, had a mean left ventricular ejection fraction of 31% and were followed-up for a median of 41 months; there were 96 deaths, including 58 HF-related deaths. Genotype distribution of the eNOS T-786C, VNTR 4a/b and Glu298Asp was similar between HF patients and controls. Haplotype frequencies differed between HF patients and controls only in African–Brazilians (p = 0.043). African–Brazilian patients that carried the haplotype -786C/4b/Asp298 had a better prognosis than patients that carried other haplotypes (log rank p value = 0.016 for all-cause mortality). In a Cox proportional hazard model adjusted for clinical variables of risk, the -786C/4b/Asp298 haplotype remained as an independent genetic predictor of survival (adjusted HR = 0.11; 95% CI = 0.01–0.83; p = 0.03).ConclusionsThe -786C/4b/Asp298 eNOS haplotype had a significant impact on HF susceptibility and prognosis, particularly in African–Brazilian patients.  相似文献   

14.
Endothelial NO, which is synthesized by endothelial nitric oxide synthase (eNOS), has been reported to be related with the occurrence of pre-eclampsia (PE). However, the polymorphisms of eNOS (− 786 T > C, 4b/a and G894T), the level of nitric oxide and the risk of PE remain unclear. Thus we performed this meta-analysis to determine the associations between them in order to predict the risk for PE and interference with PE development in the early period of antenatal care. All studies investigating the associations between PE risk and polymorphisms of eNOS, or PE risk and serum concentration of NO were reviewed. Finally, 29 studies were included, involving 11 for − 786 T > C, 11for 4b/a, and 22 for G894T polymorphisms and PE risk. In the overall analysis, − 786 T > C polymorphism was found to be related with increased PE risk in the dominant model (OR = 1.17, 95% CI = 1.02-1.35). a allele for 4b/a suffers the high risk of PE (OR = 1.46, 95% CI = 1.01–2.10). In the subgroup analysis, significantly increased risk was detected among Europeans for − 786 T > C polymorphism (OR = 1.40, 95%CI = 1.14–1.73).However, no significant association was detected for G894T polymorphism in the overall and subgroup analysis. The comprehensive evaluation of 9 available studies indicated that serum NO level was significantly decreased in case group (SMD = − 0.96 umol/mL, 95%CI = − 1.80, − 0.12 umol/mL).Hence, we concluded that eNOS gene − 786 T > C and 4b/a except for G894T polymorphisms were contributed significantly to PE risk, especially for Europeans, and a low NO concentration in serum increased the risk for PE.  相似文献   

15.
Long-term exposure to ascorbate is known to enhance endothelial nitric oxide synthase (eNOS) activity by stabilizing the eNOS cofactor tetrahydrobiopterin (BH4). We investigated acute effects of ascorbate on eNOS function in primary (HUVEC) and immortalized human endothelial cells (EA.hy926), aiming to provide a molecular explanation for the rapid vasodilatation seen in vivo upon administration of ascorbate. Enzymatic activity of eNOS and intracellular BH4 levels were assessed by means of an arginine-citrulline conversion assay and HPLC analysis, respectively. Over a period of 4h, ascorbate steadily increased eNOS activity, although endothelial BH4 levels remained unchanged compared to untreated control cells. Immunoblot analyses revealed that as early as 5 min after treatment ascorbate dose-dependently increased phosphorylation at eNOS-Ser1177 and concomitantly decreased phosphorylation at eNOS-Thr495, a phosphorylation pattern indicative of increased eNOS activity. By employing pharmacological inhibitors, siRNA-mediated knockdown approaches, and overexpression of the catalytic subunit of protein phosphatase 2A (PP2A), we show that this effect was at least partly owing to reduction of PP2A activity and subsequent activation of AMP-activated kinase. In this report, we unravel a novel mechanism for how ascorbate rapidly activates eNOS independent of its effects on BH4 stabilization.  相似文献   

16.
17.
Govers R  de Bree P  Rabelink TJ 《Life sciences》2003,73(17):2225-2236
Nitric oxide originating from the endothelial cells of the vessel wall is essential for the vascular system. It is produced by the enzyme endothelial nitric oxide synthase (eNOS). Cellular eNOS activity is affected by changes in eNOS synthesis. To address whether degradation also contributes to eNOS activity, the effect of proteasome inhibitors on eNOS-mediated NO synthesis was studied in the microvascular endothelial cell line bEnd.3 and in cultured primary aortic endothelial cells. Surprisingly, agonist-induced increases in eNOS activity were reduced to 42 and 50% in the presence of the proteasome inhibiting drugs MG132 and clasto-lactacystin-beta-lactone, respectively (P < 0.01). The decrease in activity occurred within 1 hour of drug treatment and was not accompanied by a change in intracellular levels of either eNOS or its inhibitor caveolin-1. Taken together, these data may indicate that eNOS is regulated by an interacting protein, different from caveolin-1, that inhibits its activity and is rapidly degraded by the proteasome in the presence of eNOS agonists.  相似文献   

18.
Regulation of endothelial nitric oxide synthase by the actin cytoskeleton   总被引:2,自引:0,他引:2  
In the present study, the association ofendothelial nitric oxide synthase (eNOS) with the actin cytoskeleton inpulmonary artery endothelial cells (PAEC) was examined. We found thatthe protein contents of eNOS, actin, and caveolin-1 were significantly higher in the caveolar fraction of plasma membranes than in the noncaveolar fraction of plasma membranes in PAEC. Immunoprecipitation of eNOS from lysates of caveolar fractions of plasma membranes in PAECresulted in the coprecipitation of actin, and immunoprecipitation ofactin from lysates of caveolar fractions resulted in thecoprecipitation of eNOS. Confocal microscopy of PAEC, in which eNOS waslabeled with fluorescein, F-actin was labeled with Texasred-phalloidin, and G-actin was labeled with deoxyribonuclease Iconjugated with Texas red, also demonstrated an association betweeneNOS and F-actin or G-actin. Incubation of purified eNOS with purifiedF-actin and G-actin resulted in an increase in eNOS activity. Theincrease in eNOS activity caused by G-actin was much higher than thatcaused by F-actin. Incubation of PAEC with swinholide A, an actinfilament disruptor, resulted in an increase in eNOS activity, eNOSprotein content, and association of eNOS with G-actin and in a decrease in the association of eNOS with F-actin. The increase in eNOS activitywas higher than that in eNOS protein content in swinholide A-treatedcells. In contrast, exposure of PAEC to phalloidin, an actin filamentstabilizer, caused decreases in eNOS activity and association of eNOSwith G-actin and increases in association of eNOS with F-actin. Theseresults suggest that eNOS is associated with actin in PAEC and thatactin and its polymerization state play an important role in theregulation of eNOS activity.

  相似文献   

19.
Hyperglycemia is considered a primary cause of diabetic vascular complications. A hallmark of vascular disease is endothelial cell dysfunction characterized by diminished nitric-oxide (NO)-dependent phenomena such as vasodilation, angiogenesis, and vascular maintenance. This study was designed to investigate the effects of a high level of D-glucose on endothelial NO response, oxidative stress, and glucose metabolism. Bovine aortic endothelial cells (BAECs) were pretreated with a high concentration of glucose (HG) (22 mmol/L) for at least 2 weeks and compared with control cells exposed to 5 mmol/L glucose (NG). The effect of chronic hyperglycemia on endothelial NO-synthase (eNOS) activity and expression, glycogen synthase (GS) activity, extracellular-signal-regulated kinase (ERK 1,2), p38, Akt expression, and Cu/Zn superoxide-dismutse (SOD-1) activity and expression were determined. Western blot analysis showed that eNOS protein expression decreased in HG cells and was accompanied by diminished eNOS activity. The activity of GS was also significantly lower in the HG cells than in NG cells, 25.0+/-17.4 and 89+/-22.5 nmol UDP-glucose.mg protein(-1)x min(-1), respectively. Western blot analysis revealed a 40-60% decrease in ERK 1,2 and p38 protein levels, small modification of phosphorylated Akt expression, and a 30% increase in SOD-1 protein expression in HG cells. Although SOD expression was increased, no change was observed in SOD activity. These results support the findings that vascular dysfunction due to exposure to pathologically high D-glucose concentrations may be caused by impairment of the NO pathway and increased oxidative stress accompanied by altered glucose metabolism.  相似文献   

20.
We explored the interactive effects of endothelial nitric oxide synthase (eNOS) genotypes and cigarette smoking on protein levels and enzyme activity in 33 postpartum placentas. Whilst the eNOS protein levels were lower in the rare allele (0.48+/-0.11, n=9 vs. 1. 05+/-0.10, n=24, P<0.01), the eNOS enzyme activity was about 7-fold higher in the rare allele (4556.2+/-255.4 vs. 621.8+/-180.5 cpm/mg/min, P<0.01). Smokers had lower eNOS protein levels (1.07+/-0. 09 vs. 0.50+/-0.19, P<0.05) in both alleles. It reduced the eNOS activities only in the rare allele (non-smokers: 6143.8+/-251.2, n=5, smokers: 2968.5+/-259.4, n=4, 52% reduction, P<0.01). We conclude that associations between eNOS polymorphism and protein levels and enzyme activities are modifiable by smoking, the effects of smoking are dependent on the eNOS genotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号