首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Coprinus cinereus, which was able to decolorize the anthraquinone dye Cibacron Blue 3G-A (CB) enzymatically, was used as a biocatalyst for the decolorization of synthetic solutions containing this reactive dye. Coprinus cinereus was immobilized in both calcium alginate and polyacrylamide gels, and was used for the decolorization of CB from synthetic water by using a fluidized bed bioreactor. The highest specific decolorization rate was obtained when Coprinus cinereus was entrapped in calcium alginate beads, and was of about 3.84 mg g−1 h−1 with a 50% conversion time (t 1/2) of about 2.60 h. Moreover, immobilized fungal biomass in calcium alginate continuously decolorized CB even after 7 repeated experiments without significant loss of activity, while polyacrylamide-immobilized fungal biomass retained only 67% of its original activity. The effects of some physicochemical parameters such as temperature, pH and dye concentration on decolorization performance of isolated fungal strain were also investigated.  相似文献   

2.
The interaction between complement component factor B and the triazine dye ligand Cibacron Blue F3G-A coupled to a cross-linked agarose matrix (Blue Sepharose) was found to involve the Bb part of the molecule, and to be inhibited by benzamidine. Human, chicken and rainbow trout factor B which had bound to Blue Sepharose could subsequently be eluted with benzamidine. Other serine proteases (C2, factor II, factor IX, trypsin, chymotrypsin, proteinase 3) also bound to Blue Sepharose but only those belonging to the trypsin family could be eluted with benzamidine. Trypsin treated with the active-site inhibitor phenylmethylsulfonyl fluoride did not bind to Blue Sepharose and pretreatment of Blue Sepharose with benzamidine did not influence binding of proteases. We conclude that trypsin-like serine proteases can be purified on Blue Sepharose and that the interaction of these serine proteases with Blue Sepharose involves the active site of the enzyme.  相似文献   

3.
Cibacron Blue 3G-A inhibited monkey liver serine hydroxymethyltransferase competitively with respect to tetrahydrofolate and non-competitively with respect to L-serine. NADH, a positive heterotropic effector, failed to protect the enzymes against inhibition by the dye and was unable to desorb the enzyme from Blue Sepharose CL-6B gel matrix. The binding of the dye to the free enzyme was confirmed by changes in the dye absorption spectrum. The results indicate that the dye probably binds at the tetrahydrofolate-binding domain of the enzyme, rather than at the 'dinucleotide fold'.  相似文献   

4.
探索了蓝色染料(Cibacron Blue F3G-A)亲和分离中华眼镜蛇心脏毒素的可能性。采用环氧基活化法制备蓝色染料亲和介质,中性条件下提取眼镜蛇粗毒中的心脏毒素。Tricine系统SDS-PAGE多肽电泳和Lowry法蛋白定量分析纯化效果,发现蓝色染料琼脂糖一步纯化中华眼镜蛇心脏毒素的纯度达到84%,结合量为6.9mg/ml介质。这是首次利用小分子亲和配基纯化心脏毒素。与生物大分子配基相比,活性染料分子具有价格便宜,易于合成,性质稳定,不易降解和适合大规模生产等优点。  相似文献   

5.
Cibacron Blue 3G-A, the dye moiety of Blue dextran-Sepharose, has been shown to not specifically bind a protein with a dinucleotide fold-like supersecondary structure, L-arabinose binding protein from Escherichia coli. This shows that Cibacron Blue 3G-A is not suitable as a definitive probe for the dinucleotide fold as suggested earlier (Thompson et al., 1975; Stellwagen, 1977). An explanation for the large predominance of proteins containing this protein supersecondary structure that bind to this dye is presented.  相似文献   

6.
7.
The interaction of the immobilized triazine dye Cibacron Blue 3G-A with rat, rabbit, sheep, goat, bovine and human serum albumins was studied by affinity gel electrophoresis. Dissociation constants were estimated in each instance and showed human serum albumin to have a significantly higher affinity for the dye than did albumin from any other species. Pretreatment of the defatted proteins with bilirubin (3 mol of bilirubin/mol of protein) did not increase the dissociation constants of the serum albumins, whereas pretreatment with palmitate (7 mol of palmitate/mol of protein) increased the dissociation constant in all cases: 3-fold for human serum albumin, 15-fold for other serum albumins. Increasing the bilirubin/albumin ratio (to 7:1) did not affect the dissociation constant of the albumins studied. Decreasing the palmitate/albumin ratio decreased the dissociation constant for human serum albumin, but did not affect those of bovine and rat albumins. Altering the chain length of the presaturating fatty acid dramatically changed the dissociation constant of both human and bovine serum albumins. Butyrate, hexanoate, octanoate and decanoate did not significantly influence the dissociation constants of bovine and human serum albumins for Cibacron Blue, whereas laurate, myristate and palmitate greatly increased the dissociation constant. These data are discussed in relationship to the behaviour of albumins during dye--agarose column chromatography. In Addendum the effect of nucleotide presaturation on the interaction between Bacillus stearothermophilus 6-phosphogluconate dehydrogenase and the immobilized triazine dyes Cibacron Blue 3G-A and Procion Red HE-3B was examined, and the implications for dye--ligand chromatography are discussed.  相似文献   

8.
Cibacron Blue F3G-A, a probe used to monitor nucleotide binding domains in enzymes, inhibited sheep liver 5,10-methylenetetrahydrofolate reductase competitively with respect to 5-methyltetrahydrofolate and NADPH. TheK i values obtained by kinetic methods and theK d value for the binding of the dye to the enzyme estimated by protein fluorescence quenching were in the range 0.9–1.2 μM. Another triazine dye, Procion Red HE-3B interacted with the enzyme in an essentially similar manner to that observed with Cibacron Blue F3G-A. These results as well as the interaction of the dye with the enzyme monitored by difference spectroscopy and intrinsic protein fluorescence quenching methods indicated that the dye was probably interacting at the active site of the enzyme by binding at a hydrophobic region.  相似文献   

9.
Poly(ethylene) hollow-fibre membranes with immobilised Cibacron Blue F3G-A were obtained in four different ways from epoxy-activated fibres. Membranes with a maximum capacity of 26 mg lysozyme ml–1and a dye density of 52 mol ml–1were obtained when ammonia was used to open the epoxy group before dye immobilisation. Pure water flux of the modified membranes at 1 bar pressure was 1.0 cm min–1, thus meaning only a reduction of 1.5-fold with regard to the unmodified membranes. The support-dye bond was stable as judged by the unmodified capacity of the membranes and the negligible amount of dye leaked after 520 h of exposure to 6 M urea in 0.5 M NaOH.  相似文献   

10.
The paper presents the main results obtained from the study of the biodegradation of phenolic industrial wastewaters by a pure culture of immobilized cells of Pseudomonas putida ATCC 17484. The experiments were carried out in batch and continuous mode. The maximum degradation capacity and the influence of the adaptation of the microorganism to the substrate were studied in batch mode. Industrial wastewater with a phenol concentration of 1000 mg/l was degraded when the microorganism was adapted to the toxic chemical. The presence in the wastewater of compounds other than phenol was noted and it was found that Pseudomonas putida was able to degrade these compounds. In continuous mode, a fluidized-bed bioreactor was operated and the influence of the organic loading rate on the removal efficiency of phenol was studied. The bioreactor showed phenol degradation efficiencies higher than 90%, even for a phenol loading rate of 0.5 g phenol/ld (corresponding to 0.54 g TOC/ld).  相似文献   

11.
A specific feature of anthraquinone dyes (AD) is to mimic the adenine nucleotides ATP, ADP, NAD and NADH, enabling them to act as ligands in interaction with nucleotide-binding sites of several enzymes and receptors. In the present study, the interactions and/or inhibitory effects of eight AD, including Cibacron Blue 3G-A (Reactive Blue 2), Procion Blue MX-R (Reactive Blue 4) and Remazol Brilliant Blue R (Reactive Blue 19) on the activity of (Na(+)/K(+))-ATPase were investigated. The AD used in this paper could be divided into two groups: i) AD1-AD4 that do not contain the triazine moiety; ii) AD5-AD8 that contain the triazine moiety. Interaction affinity between the respective dye and (Na+/K+)-ATPase was characterized by means of enzyme kinetics. All AD, excluding AD1 and AD2 (which were practically ineffective) exerted effective competitive inhibition to the (Na(+)/K(+))-ATPase activity. Present study is devoted to elucidation of relationship between the inhibitory efficacy of AD against (Na(+)/K(+))-ATPase activity, their acid-basic properties and their three dimensional structure. From the results obtained, the following conclusions could be driven: 1. Similarities in the mutual position of positively and negatively charged parts of ATP and AD are responsible for their interaction with ATP-binding site of (Na(+)/K(+))-ATPase. This may be documented by fact that mutual position of 1-aminogroup of anthraquinone and -SO3(-) group of benzenesulphonate part of respective AD plays crucial role for inhibition of this enzyme. Distances of these two groups on all effective AD were found to be similar as the distance of the 6-aminogroup of adenine and the second phosphate group on ATP molecule. This similarity could be responsible for biomimetic recognition of AD in ATP-binding loci of (Na(+)/K(+))-ATPase. 2. The affinity of AD to ATP binding site of (Na(+)/K(+))-ATPase increases with increasing values of molar refractivity, i. e., with increasing molecular volume and polarizability.  相似文献   

12.
Cells of Candida guilliermondii entrapped in Ca-alginate beads were used for xylitol production, from concentrated hemicellulose hydrolyzate of sugarcane bagasse, in a fluidized bed bioreactor (FBR). The maximum xylitol concentration 28.9 g xylitol/L was obtained at a high aeration rate of 600 mL/min after 70 h of fermentation, indicating that the use of high aeration rate in this system is favored for better oxygen transfer into the immobilized cells. The specific xylitol productivity and the xylitol yield were of 0.4 g xylitol/L.h and 0.58 g xylitol/g xylose respectively. The immobilization efficiency at the end of the fermentation was of 65 %. After 90 h of fermentation xylitol productivity and yield decreased to 0.25 g xylitol/L.h and 0.47 g xylitol/g xylose respectively, indicating the beginning of xylitol consumption by the yeast. The use of FBR system with immobilized cells presented high xylitol yield and productivity.  相似文献   

13.
14.
A rapid procedure for the large-scale purification of pig heart nucleoside diphosphate kinase is described. The purification procedure involves extraction of the enzyme, absorption on cibacron Blue 3G-A Sepharose, elution with ATP, ammonium sulfate precipitation, heat treatment, and rechromatography on Cibacron Blue 3G-A Sepharose. Typically, 10–12 mg of pure nucleoside diphosphate kinase is obtained from 1 kg of heart muscle (50% yield), with a purification factor of 1200 over the extract. The specific activity is 1500 units/mg at 25°C with 8-bromoinosine 5′-diphosphate as acceptor nucleotide. This method may be easily scaled up.  相似文献   

15.
Continuous operation of a three-phase fluidized bed bioreactor using immobilized cells showed that both immobilized and suspended cells contributed to the production of acetic acid. Unlike the rapid decrease in the productivity at dilution rates above 0.25 h−1 in the free cell fermentation, the productivity was little affected by the dilution rate in the immobilized cell fermentation. Theoretical models were proposed for the continuous process. The models approximately agreed with the experimental results. Experimental results and/or theoretical calculations based on the kinetic models showed that suspended cells were important in the production of acetic acid if the solid holdup was small or if gel radius was large. Theoretical calculations showed that an optimal solid holdup or gel size existed at higher dilution rates because of the kLa dependence on solid holdup and particle diameter.  相似文献   

16.
Bivalent metal ions, particularly Zn2+ and other members of the first-row transition series, promote irreversible inactivation of yeast hexokinase by Cibacron Blue F3G-A at a site competitive with both ATP and D-glucose. Difference spectroscopy indicates that the protein-dye dissociation constant is decreased from 250 micrometers in the absence of metal ions to less than 100 micrometers in the presence of appropriate concentrations of metal ions, with specificity displayed in the sequence of Zn2+ greater than Cu2+ greater than Ni2+ greater than Mn2+. Quantitative inactivation of yeast hexokinase leads to the incorporation of approx. 1 mol of Cibacron Blue F3G-A/mol of subunit of mol. wt. 51 000 in both the presence and the absence of metal ion. These results suggest the formation of a highly specific ternary complex involving enzyme, dye and metal ion at the active-site region of the enzyme, and correlate well with the known effects of metal ions in promoting the binding of hexokinase to immobilized Cibacron Blue F3G-A.  相似文献   

17.
A thermo-responsive polymer (PNNB) was synthesized with lower critical solution temperature 27.5°C and over 95% recovery. The adsorption of porcine pancreatic lipase on Cibacron Blue F3GA-conjugated PNNB (PNNB-CB) closely followed the bi-Langmuir adsorption isotherm. The maximum adsorption capacity was found at pH 5.0, with a ligand density of 18.4 μmol/g polymers. The optimized eluent was a 0.01 M phosphate buffer solution at pH 8.0 containing 20% ethylene glycol. Six adsorptiondesorption recycles indicated excellent reusability of the affinity adsorbent. PNNB-CB was applied to separate porcine pancreatic lipase from its crude material giving a lipase activity recovery of 81.6% with a 16-fold purification factor. Lipase could be purified to single-band purity, according to gel electrophoresis. The purification strategy is therefore feasible and efficient for purifying proteins of interest.  相似文献   

18.
In the present study the oxygen mass transfer from the gas to the aqueous phase in a Three-Phase Inverse Fluidized Bed (TPIFB) has been studied. A pilot scale TPIFB has been designed and constructed. For determination of the volumetric oxygen mass transfer coefficient the elegant dynamic method, described by Dang et al. (1977) was used. The influence of hydrodynamic parameters, e.g., superficial velocities of the gas and liquid phases on the mass transfer rate was studied. In the range of variables covered, it was found that the superficial liquid velocity had a weak effect on the mass transfer whereas the gas flowrate affects the mass transfer positively. The results for the volumetric oxygen transfer coefficient in the TPIFB were compared to reported values of that coefficient, measured in a classic three-phase fluidised bed under similar hydrodynamic conditions and solid phase properties. The comparison demonstrated a two-fold increase of the oxygen transfer rate in the inverse bed over that in the classic one.  相似文献   

19.
The best culture medium composition for the production of bikaverin by Gibberella fujikuroi in shake-flasks, i.e. 100 g glucose l–1; 1 g NH4Cl l–1; 2 g rice flour l–1; 5 g KH2PO4 l–1 and 2.5 g MgSO4 l–1, was obtained through a fractional factorial design and then scaled-up to a fluidized bioreactor. The effects of carbon and nitrogen concentrations, inoculum size, aeration, flow rate and bead sizes on batch bikaverin production using immobilized G. fujikuroi in a fluidized bioreactor were determined by an orthogonal experimental design. Concentrations of up to 6.83 g bikaverin l–1 were obtained when the medium contained 100 g glucose l–1 and 1 g NH4Cl l–1 with an inoculum ratio of 10% v/v, an aeration rate of 3 volumes of air per volume of medium min–1, and a bead size of 3 mm. Based on dry weight, the bikaverin production was 30–100 times larger than found in submerged culture and approximately three times larger than reported for solid substrate fermentation.  相似文献   

20.
Summary  Growth of Gibberella fujikuroi in submerged cultures occurs as micelles or filamentous hyphae dispersed in fluid and pellets or stable, spherical agglomerations. Gibberella fujikuroi growth, substrate consumption and bikaverin production kinetics obtained from submerged batch fermentation were fitted to three different sigmoid models: two and three-parameter Gompertz models and one Logistic model. Growth fitting was used to compare between models and select the best one by means of an F test. The best model for describing growth was the two-parameter Gompertz model and was used for glucose consumption and bikaverin production fitting. Data from eight different schemes of fermentations were analysed and parameter estimation was carried out by means of minimization of residual sum of squares. Some characteristic values obtained with the two-parameter Gompertz model fit are: μ=0.028 h−1, Yx/s=0.1089 g substrate/g biomass, α =0.1384 g product/g biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号