首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Methods to generate fibers from hydrogels, with control over mechanical properties, fiber diameter, and crystallinity, while retaining cytocompatibility and degradability, would expand options for biomaterials. Here, we exploited features of silk fibroin protein for the formation of tunable silk hydrogel fibers. The biological, chemical, and morphological features inherent to silk were combined with elastomeric properties gained through enzymatic crosslinking of the protein. Postprocessing via methanol and autoclaving provided tunable control of fiber features. Mechanical, optical, and chemical analyses demonstrated control of fiber properties by exploiting the physical cross‐links, and generating double network hydrogels consisting of chemical and physical cross‐links. Structure and chemical analyses revealed crystallinity from 30 to 50%, modulus from 0.5 to 4 MPa, and ultimate strength 1–5 MPa depending on the processing method. Fabrication and postprocessing combined provided fibers with extensibility from 100 to 400% ultimate strain. Fibers strained to 100% exhibited fourth order birefringence, revealing macroscopic orientation driven by chain mobility. The physical cross‐links were influenced in part by the drying rate of fabricated materials, where bound water, packing density, and microstructural homogeneity influenced cross‐linking efficiency. The ability to generate robust and versatile hydrogel microfibers is desirable for bottom‐up assembly of biological tissues and for broader biomaterial applications.  相似文献   

2.
Abstract. Spider silks possess a remarkable combination of high tensile strength and extensibility that makes them among the toughest materials known. Despite the potential exploitation of these properties in biotechnology, very few silks have ever been characterized mechanically. This is due in part to the difficulty of measuring the thin diameters of silk fibers. The largest silk fibers are only 5–10 μm in diameter and some can be as fine as 50 nm in diameter. Such narrow diameters, coupled with the refraction of light due to the anisotropic nature of crystalline regions within silk fibers, make it difficult to determine the size of silk fibers. Here, we report upon a technique that uses polarized light microscopy (PLM) to accurately and precisely characterize the diameters of spider silk fibers. We found that polarized light microscopy is as precise as scanning electron microscopy (SEM) across repeated measurements of individual samples of silk and resulted in mean diameters that were ~0.10 μm larger than those from SEM. Furthermore, we demonstrate that thread diameters within webs of individual spiders can vary by as much as 600%. Therefore, the ability of PLM to non‐invasively characterize the diameters of each individual silk fiber used in mechanical tests can provide a crucial control for natural variation in silk diameters, both within webs and among spiders.  相似文献   

3.
Honeybee silk is composed of four fibrous proteins that, unlike other silks, are readily synthesized at full-length and high yield. The four silk genes have been conserved for over 150 million years in all investigated bee, ant and hornet species, implying a distinct functional role for each protein. However, the amino acid composition and molecular architecture of the proteins are similar, suggesting functional redundancy. In this study we compare materials generated from a single honeybee silk protein to materials containing all four recombinant proteins or to natural honeybee silk. We analyse solution conformation by dynamic light scattering and circular dichroism, solid state structure by Fourier Transform Infrared spectroscopy and Raman spectroscopy, and fiber tensile properties by stress-strain analysis. The results demonstrate that fibers artificially generated from a single recombinant silk protein can reproduce the structural and mechanical properties of the natural silk. The importance of the four protein complex found in natural silk may lie in biological silk storage or hierarchical self-assembly. The finding that the functional properties of the mature material can be achieved with a single protein greatly simplifies the route to production for artificial honeybee silk.  相似文献   

4.
Spiders and their silk are an excellent system for connecting the properties of biological materials to organismal ecology. Orb-weaving spiders spin sticky capture threads that are moderately strong but exceptionally extensible, resulting in fibers that can absorb remarkable amounts of energy. These tough fibers are thought to be adapted for arresting flying insects. Using tensile testing, we ask whether patterns can be discerned in the evolution of silk material properties and the ecological uses of spider capture fibers. Here, we present a large comparative data set that allows examination of capture silk properties across orb-weaving spider species. We find that material properties vary greatly across species. Notably, extensibility, strength, and toughness all vary approximately sixfold across species. These material differences, along with variation in fiber size, dictate that the mechanical performance of capture threads, the energy and force required to break fibers, varies by more than an order of magnitude across species. Furthermore, some material and mechanical properties are evolutionarily correlated. For example, species that spin small diameter fibers tend to have tougher silk, suggesting compensation to maintain breaking energy. There is also a negative correlation between strength and extensibility across species, indicating a potential evolutionary trade-off. The different properties of these capture silks should lead to differences in the performance of orb webs during prey capture and help to define feeding niches in spiders.  相似文献   

5.
Rodin VV  Reznichenko GM  Vasina EL 《Biofizika》2004,49(6):1021-1029
Natural silk (Bombyx mori) fibers with low humidity (0.07 g H2O/g dried silk) after temperature influence were studied for mechanical longitudinal deformation. On the basis of the stress-strain curves, some estimates of tensile properties for silk fibers were obtained. It was found that the maximal tension (sigma(max) in tensile-linear field of deformation of silk fibers decreases with increasing fiber diameter. The results showed that the heating of fibers (100 degrees C) results in a diminishing of the sigma(max)-value. Scanning electron microscopy pictures for cross section and longitudinal fiber surface were obtained. Natural silk fibers were studied by the NMR relaxation method (free induction decay curves) and the second moments of NMR-line shape in silk samples were calculated. The intra- and intermolecular contributions into the second moment were analyzed. The results showed a strong interaction of water molecules with macromolecules and a low molecular mobility. Some characteristics of interactions between silk macromolecules and water molecules as well as the role of intermolecular links in the change of the structure-function properties of natural silk under the action of external factors are discussed.  相似文献   

6.
Nanocomposite fibers of Bombyx mori silk and single wall carbon nanotubes (SWNT) were produced by the electrospinning process. Regenerated silk fibroin dissolved in a dispersion of carbon nanotubes in formic acid was electrospun into nanofibers. The morphology, structure, and mechanical properties of the electrospun nanofibers were examined by field emission environmental scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, and microtensile testing. TEM of the reinforced fibers shows that the single wall carbon nanotubes are embedded in the fibers. The mechanical properties of the SWNT reinforced fiber show an increase in Young's modulus up to 460% in comparison with the un-reinforced aligned fiber, but at the expense of the strength and strain to failure.  相似文献   

7.
A modified forced silking procedure was developed to allow an accurate study of the tensile properties of spider (Argiope trifasciata) silk, especially the characterization of the variability of the tensile properties of forcibly silked fibers. The procedure involves an immobilization technique that does not require anesthetization of the spider, a mode of collection that allows immediate access to any silk sample with a minimum manipulation, and a technique to measure the diameters of the spider silk fibers systematically. The forcibly silked fibers obtained by this procedure show reproducible tensile properties in terms of force-displacement curves as well as stress-strain curves. Furthermore, reproducibility also extends to forcibly silked fibers obtained from different spiders when stress-strain is considered.  相似文献   

8.
Hu X  Shmelev K  Sun L  Gil ES  Park SH  Cebe P  Kaplan DL 《Biomacromolecules》2011,12(5):1686-1696
We present a simple and effective method to obtain refined control of the molecular structure of silk biomaterials through physical temperature-controlled water vapor annealing (TCWVA). The silk materials can be prepared with control of crystallinity, from a low content using conditions at 4 °C (α helix dominated silk I structure), to highest content of ~60% crystallinity at 100 °C (β-sheet dominated silk II structure). This new physical approach covers the range of structures previously reported to govern crystallization during the fabrication of silk materials, yet offers a simpler, green chemistry, approach with tight control of reproducibility. The transition kinetics, thermal, mechanical, and biodegradation properties of the silk films prepared at different temperatures were investigated and compared by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), uniaxial tensile studies, and enzymatic degradation studies. The results revealed that this new physical processing method accurately controls structure, in turn providing control of mechanical properties, thermal stability, enzyme degradation rate, and human mesenchymal stem cell interactions. The mechanistic basis for the control is through the temperature-controlled regulation of water vapor to control crystallization. Control of silk structure via TCWVA represents a significant improvement in the fabrication of silk-based biomaterials, where control of structure-property relationships is key to regulating material properties. This new approach to control crystallization also provides an entirely new green approach, avoiding common methods that use organic solvents (methanol, ethanol) or organic acids. The method described here for silk proteins would also be universal for many other structural proteins (and likely other biopolymers), where water controls chain interactions related to material properties.  相似文献   

9.
Synthetic spider silk: a modular fiber   总被引:20,自引:0,他引:20  
Spiders make their webs and perform a wide range of tasks with up to seven different types of silk fiber. These different fibers allow a comparison of structure with function, because each silk has distinct mechanical properties and is composed of peptide modules that confer those properties. By using genetic engineering to mix the modules in specific proportions, proteins with defined strength and elasticity can be designed, which have many potential medical and engineering uses.  相似文献   

10.
Caddisflys (order Trichoptera) construct elaborate protective shelters and food harvesting nets with underwater adhesive silk. The silk fiber resembles a nanostructured tape composed of thousands of nanofibrils (~ 120 nm) oriented with the major axis of the fiber, which in turn are composed of spherical subunits. Weaker lateral interactions between nanofibrils allow the fiber to conform to surface topography and increase contact area. Highly phosphorylated (pSX)(4) motifs in H-fibroin blocks of positively charged basic residues are conserved across all three suborders of Trichoptera. Electrostatic interactions between the oppositely charged motifs could drive liquid-liquid phase separation of silk fiber precursors into a complex coacervates mesophase. Accessibility of phosphoserine to an anti-phosphoserine antibody is lower in the lumen of the silk gland storage region compared to the nascent fiber formed in the anterior conducting channel. The phosphorylated motifs may serve as a marker for the structural reorganization of the silk precursor mesophase into strongly refringent fibers. The structural change occurring at the transition into the conducting channel makes this region of special interest. Fiber formation from polyampholytic silk proteins in Trichoptera may suggest a new approach to create synthetic silk analogs from water-soluble precursors.  相似文献   

11.
12.
Spider silk possesses a unique combination of high tensile strength and elasticity resulting in extraordinarily tough fibers, compared with the best synthetic materials. However, the potential application of spider silk and biomimetic fibers depends upon retention of their high performance under a variety of conditions. Here, we report on changes in the mechanical properties of dragline and capture silk fibers from several spider species over periods up to 4 years of benign aging. We find an improvement in mechanical performance of silk fibers during the first year of aging. Fibers rapidly decrease in diameter, suggesting an increase in structural alignment and organization of molecules. One-year old silk also is stiffer and has higher stress at yield than fresh silk, whereas breaking force, elasticity, and toughness either improve or are unaffected by early aging. However, 4-year old silk shows signs of degradation as the breaking load, elasticity, and toughness are all lower than in fresh silk. Aging, however, does not reduce the tensile strength of silk. These data suggest initially rapid reorganization and tighter packaging of molecules within the fiber, followed by longer-term decomposition. We hypothesize that possibly the breakdown of amino acids via emission of ammonia gas, as is seen in long-term aging of museum silkworm fabrics, may contribute. Degradation of spider silk under benign conditions may be a concern for efforts to construct and utilize biomimetic silk analogs. However, our findings suggest an initial improvement in mechanical performance and that even old spider silk still retains impressive mechanical performance. J. Exp. Zool. 309A:494-504, 2008. (c) 2008 Wiley-Liss, Inc.  相似文献   

13.
The microstructures of N-methylmorpholine-N-oxide (NMMO) regenerated silk fibers have been characterized by atomic force microscopy from the micrometer to the nanometer scale and compared with those previously found from natural silks. Regenerated fibers show poor tensile properties and a brittle behavior, but their mechanical properties improve if subjected to post-spinning drawing. Consequently, it was hypothesized that post-spinning drawing would lead to a microstructure more similar to that of the natural material. Here we show that the microstructure of the samples not subjected to post-spinning drawing is composed of nanoglobules that differ from those found in natural silkworm silk both in size and orientation with respect to the macroscopic axis of the fiber. The microstructure of samples subjected to post-spinning drawing evolves in the sense of decreasing the size but increasing the orientation of the nanoglobules, but these effects are only observed in some regions of the fibers.  相似文献   

14.
Eisoldt L  Thamm C  Scheibel T 《Biopolymers》2012,97(6):355-361
Fibrous proteins in nature fulfill a wide variety of functions in different structures ranging from cellular scaffolds to very resilient structures like tendons and even extra-corporal fibers such as silks in spider webs or silkworm cocoons. Despite their different origins and sequence varieties many of these fibrous proteins share a common building principle: they consist of a large repetitive core domain flanked by relatively small non-repetitive terminal domains. Amongst protein fibers, spider dragline silk shows prominent mechanical properties that exceed those of man-made fibers like Kevlar. Spider silk fibers assemble in a spinning process allowing the transformation from an aqueous solution into a solid fiber within milliseconds. Here, we highlight the role of the non-repetitive terminal domains of spider dragline silk proteins during storage in the gland and initiation of the fiber assembly process.  相似文献   

15.
To study the spinning condition of natural biopolymer silk, the silk fibers were directly acquired from Bombyx mori silkworm, N140 x C140 by a simple artificial forcibly silking method at the speed of 60, 120, 180 and 240 cm min(-1), respectively and its microstructure and physical properties were evaluated. The fine silk fibers (about 8 microm) were obtained at faster spinning speed, 240 cm min(-1). The tensile properties of silk fibers were remarkably increased with raising the forcibly spinning speeds. The beta-sheet structure contents of silk fibers obtained at higher speed were considerably increased. The fibers obtained by different spinning speeds exhibited a fairly similar X-ray crystallinity, while the degree of molecular orientation increased with decreasing the fiber diameter. The fine silk fibers obtained at higher speed (240 cm min(-1)) exhibited a slightly higher thermal stability, as shown by the upward shift of differential scanning calorimetry (DSC) decomposition temperature.  相似文献   

16.
In this paper, the spinnable regenerated silk fibroin aqueous solution with high concentration was prepared and the regenerated silk fibers were obtained from the aqueous solution by two different spinning processes at ambient temperature. The orientation of these fibers was characterized by polarizing microscope. Their secondary structure was investigated by Raman spectroscopy and related mechanical properties were also measured. These data showed that shearing is an important step for increasing orientation and silk II (β-sheet) structure, and the mechanical properties of the regenerated silk fibers can also be improved by shearing.  相似文献   

17.
Spiders have evolved a complex system of silk producing glands. Each of the glands produces silk with strength and elasticity tailored to its biological purpose. Sequence analysis of the major ampullate silk reveals four highly conserved concatenated blocks of amino acids: (GA) n , A n , GPGXX, and GGX. While the GPGXX motif, which has been hypothesized to be responsible for the extensibility of the fiber, displays natural variation in its precise sequence arrangement and content, correlating these differences with particular fiber properties has been difficult. Three genetic constructs based on the Argiope aurantia sequence were engineered to progressively increase the number of GPGXX repeats in a head-to-tail assembly prior to interruption by another motif. Circular dichroism and Fourier transform infrared spectroscopy of synthetic spider silk spin dopes show secondary structures that correspond to an increase in the repeat number of GPGXX regions and an increase in the extensibility of synthetically spun recombinant fibers.  相似文献   

18.
The relation between the uptake of atmospheric CO(2) and insect's production of silk fiber has not yet been reported. Here, we provide the first quantitative demonstrations that four species of silkworms (Bombyx mori, Samia cynthia ricini, Antheraea pernyi, and Antheraea yamamai) and a silk-producing spider (Nephila clavata) incorporate atmospheric CO(2) into their silk fibers. The abundance of (13)C incorporated from the environment was determined by mass spectrometry and (13)C NMR measurements. Atmospheric CO(2) was incorporated into the silk fibers in the carbonyl groups of alanine, aspartic acid, serine, and glycine and the C(gamma) of aspartic acid. We show a simple model for the uptake of atmospheric CO(2) by silkworms. These results will demonstrate that silkworm has incorporated atmospheric CO(2) into silk fiber via the TCA cycle; however, the magnitude of uptake into the silk fibers is smaller than that consumed by the photosynthesis in trees and coral reefs.  相似文献   

19.
Ittah S  Cohen S  Garty S  Cohn D  Gat U 《Biomacromolecules》2006,7(6):1790-1795
We have employed baculovirus-mediated expression of the recombinant A. diadematus spider dragline silk fibroin rADF-4 to explore the role of the evolutionary conserved C-terminal domain in self-assembly of the protein into fiber. In this unique system, polymerization of monomers occurs in the cytoplasm of living cells, giving rise to superfibers, which resemble some properties of the native dragline fibers that are synthesized by the spider using mechanical spinning. While the C-terminal containing rADF-4 self-assembled to create intricate fibers in the host insect cells, a C-terminal deleted form of the protein (rADF-4-DeltaC) self-assembled to create aggregates, which preserved the chemical stability of dragline fibers, yet lacked their shape. Interestingly, ultrastructural analysis showed that the rADF-4-DeltaC monomers did form rudimentary nanofibers, but these were short and crude as compared to those of rADF-4, thus not supporting formation of the highly compact and oriented "superfiber" typical to the rADF-4 form. In addition, using thermal analysis, we show evidence that the rADF-4 fibers but not the rADF-4-DeltaC aggregates contain crystalline domains, further establishing the former as a veritable model of authentic dragline fibers. Thus, we conclude that the conserved C-terminal domain of dragline silk is important for the correct structure of the basic nanofibers, which assemble in an oriented fashion to form the final intricate natural-like dragline silk fiber.  相似文献   

20.

Background

Bombyx mori silk fibers with thin diameters have advantages of lightness and crease-resistance. Many studies have used anti-juvenile hormones to induce trimolters in order to generate thin silk; however, there has been comparatively little analysis of the morphology, structure and mechanical properties of trimolter silk.

Methods

This study induced two kinds of trimolters by appling topically anti-juvenile hormones and obtained thin diameter silk. Scanning electron microscope (SEM), FTIR analysis, tensile mechanical testing, chitin staining were used to reveal that the morphology, conformation and mechanical property of the trimolter silk.

Results

Cocoon of trimolters were highly densely packed by thinner fibers and thus had small apertures. We found that the conformation of trimolter silk fibroin changed and formed more β-sheet structures. In addition, analysis of mechanical parameters yielded a higher Young's modulus and strength in trimolter silk than in the control. By chitin staining of silk gland, we postulated that the mechanical properties of trimolters' silk was enhanced greatly during to the structural changes of silk gland.

Conclusion

We induced trimolters by anti-juvenile hormones and the resulting cocoons were more closely packed and had smaller silk fiber diameters. We found that the conformation of trimolters silk fibroin had a higher content of β-sheet structures and better mechanical properties.

General significance

Our study revealed the structures and mechanical properties of trimolter silk, and provided a valuable reference to improve silk quality by influencing molting in silkworms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号