首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Macroautophagy is an evolutionarily conserved vacuolar, self-digesting mechanism for cellular components, which end up in the lysosomal compartment. In mammalian cells, macroautophagy is cytoprotective, and protects the cells against the accumulation of damaged organelles or protein aggregates, the loss of interaction with the extracellular matrix, and the toxicity of cancer therapies. During periods of nutrient starvation, stimulating macroautophagy provides the fuel required to maintain an active metabolism and the production of ATP. Macroautophagy can inhibit the induction of several forms of cell death, such as apoptosis and necrosis. However, it can also be part of the cascades of events that lead to cell death, either by collaborating with other cell death mechanisms or by causing cell death on its own. Loss of the regulation of bulk macroautophagy can prime self-destruction by cells, and some forms of selective autophagy and non-canonical forms of macroautophagy have been shown to be associated with cell demise. There is now mounting evidence that autophagy and apoptosis share several common regulatory elements that are crucial in any attempt to understand the dual role of autophagy in cell survival and cell death.  相似文献   

2.
Autophagy and signaling: their role in cell survival and cell death   总被引:1,自引:0,他引:1  
Macroautophagy is a vacuolar, self-digesting mechanism responsible for the removal of long-lived proteins and damaged organelles by the lysosome. The discovery of the ATG genes has provided key information about the formation of the autophagosome, and about the role of macroautophagy in allowing cells to survive during nutrient depletion and/or in the absence of growth factors. Two connected signaling pathways encompassing class-I phosphatidylinositol 3-kinase and (mammalian) target of rapamycin play a central role in controlling macroautophagy in response to starvation. However, a considerable body of literature reports that macroautophagy is also a cell death mechanism that can occur either in the absence of detectable signs of apoptosis (via autophagic cell death) or concomitantly with apoptosis. Macroautophagy is activated by signaling pathways that also control apoptosis. The aim of this review is to discuss the signaling pathways that control macroautophagy during cell survival and cell death.  相似文献   

3.
Macroautophagy is a degradation/recycling system ubiquitous in eukariotic cells, which generates nutrients during fasting under the control of amino acids and hormones, and contributes to the turnover and rejuvenation of cellular components (long-lived proteins, cytomembranes and organelles). Tight coupling between these two functions may be the weak point in cell housekeeping. Ageing denotes a post-maturational deterioration of tissues and organs with the passage of time, due to the progressive accumulation of the misfunctioning cell components because of oxidative damage and an age-dependent decline of turnover rate and housekeeping. Caloric restriction (CR) and lower insulin levels may slow down many age-dependent processes and extend lifespan. Recent evidence is reviewed showing that autophagy is involved in ageing and in the anti-ageing action of anti-ageing calorie restriction: function of autophagy declines during adulthood and is almost negligible at older age; CR prevents the age-dependent decline of autophagic proteolysis and improves the sensitivity of liver cells to stimulation of lysosomal degradation; protection of autophagic proteolysis from the age-related decline co-varies with the duration and level of anti-ageing food restriction like the effects of CR extending lifespan; the pharmacological stimulation of macroautophagy has anti-ageing effects. Besides the involvement in ageing, macroautophagy may have an essential role in the pathogenesis of many age-associated diseases. Higher protein turnover may not fully account for the anti-ageing effects of macroautophagy, and effects of macroautophagy on housekeeping of the cell organelles, antioxidant machinery of cell membranes and transmembrane cell signaling should also be considered.  相似文献   

4.
5.
Macroautophagy is an important process for removing misfolded and aggregated protein in cells, the dysfunction of which has been directly linked to an increasing number of neurodegenerative disorders. However, the details of macroautophagy in prion diseases remain obscure. Here we demonstrated that in the terminal stages of scrapie strain 263K-infected hamsters and human genetic prion diseases, the microtubule-associated protein 1 light chain 3 (LC3) was converted from the cytosolic form to the autophagosome-bound membrane form. Macroautophagy substrate sequestosome 1 (SQSTM1) and polyubiquitinated proteins were downregulated in the brains of sick individuals, indicating enhanced macroautophagic protein degradation. The levels of mechanistic target of rapamycin (MTOR) and phosphorylated MTOR (p-MTOR) were significantly decreased, which implies that this enhancement of the macroautophagic response is likely through the MTOR pathway which is a negative regulator for the initiation of macroautophagy. Dynamic assays of the autophagic system in the brains of scrapie experimental hamsters after inoculation showed that alterations of the autophagic system appeared along with the deposits of PrPSc in the infected brains. Immunofluorescent assays revealed specific staining of autophagosomes in neurons that were not colocalized with deposits of PrPSc in the brains of scrapie infected hamsters, however, autophagosome did colocalize with PrPSc in a prion-infected cell line after treatment with bafilomycin A1. These results suggest that activation of macroautophagy in brains is a disease-correlative phenomenon in prion diseases.  相似文献   

6.
《Autophagy》2013,9(11):1604-1620
Macroautophagy is an important process for removing misfolded and aggregated protein in cells, the dysfunction of which has been directly linked to an increasing number of neurodegenerative disorders. However, the details of macroautophagy in prion diseases remain obscure. Here we demonstrated that in the terminal stages of scrapie strain 263K-infected hamsters and human genetic prion diseases, the microtubule-associated protein 1 light chain 3 (LC3) was converted from the cytosolic form to the autophagosome-bound membrane form. Macroautophagy substrate sequestosome 1 (SQSTM1) and polyubiquitinated proteins were downregulated in the brains of sick individuals, indicating enhanced macroautophagic protein degradation. The levels of mechanistic target of rapamycin (MTOR) and phosphorylated MTOR (p-MTOR) were significantly decreased, which implies that this enhancement of the macroautophagic response is likely through the MTOR pathway which is a negative regulator for the initiation of macroautophagy. Dynamic assays of the autophagic system in the brains of scrapie experimental hamsters after inoculation showed that alterations of the autophagic system appeared along with the deposits of PrPSc in the infected brains. Immunofluorescent assays revealed specific staining of autophagosomes in neurons that were not colocalized with deposits of PrPSc in the brains of scrapie infected hamsters, however, autophagosome did colocalize with PrPSc in a prion-infected cell line after treatment with bafilomycin A1. These results suggest that activation of macroautophagy in brains is a disease-correlative phenomenon in prion diseases.  相似文献   

7.
Macroautophagy is a conserved degradative pathway in which a double-membrane compartment sequesters cytoplasmic cargo and delivers the contents to lysosomes for degradation. Efficient formation and maturation of autophagic vesicles, so-called phagophores that are precursors to autophagosomes, and their subsequent trafficking to lysosomes relies on the activity of small RAB GTPases, which are essential factors of cellular vesicle transport systems. The activity of RAB GTPases is coordinated by upstream factors, which include guanine nucleotide exchange factors (RAB GEFs) and RAB GTPase activating proteins (RAB GAPs). A role in macroautophagy regulation for different TRE2-BUB2-CDC16 (TBC) domain-containing RAB GAPs has been established. Recently, however, a positive modulation of macroautophagy has also been demonstrated for the TBC domain-free RAB3GAP1/2, adding to the family of RAB GAPs that coordinate macroautophagy and additional cellular trafficking pathways.  相似文献   

8.
Macroautophagy is an intracellular catabolic process involved in the formation of multiple membrane structures ranging from phagophores to autophagosomes and autolysosomes. Dysfunction of macroautophagy is implicated in both physiological and pathological conditions. To date, 38 autophagy-related (ATG) genes have been identified as controlling these complicated membrane dynamics during macroautophagy in yeast; approximately half of these genes are clearly conserved up to human, and there are additional genes whose products function in autophagy in higher eukaryotes that are not found in yeast. The function of the ATG proteins, in particular their ability to interact with a number of macroautophagic regulators, is modulated by posttranslational modifications (PTMs) such as phosphorylation, glycosylation, ubiquitination, acetylation, lipidation, and proteolysis. In this review, we summarize our current knowledge of the role of ATG protein PTMs and their functional relevance in macroautophagy. Unraveling how these PTMs regulate ATG protein function during macroautophagy will not only reveal fundamental mechanistic insights into the regulatory process, but also provide new therapeutic targets for the treatment of autophagy-associated diseases.  相似文献   

9.
Rosenfeldt MT  Nixon C  Liu E  Mah LY  Ryan KM 《Autophagy》2012,8(6):963-969
(Macro)Autophagy is a phylogenetically conserved membrane-trafficking process that functions to deliver cytoplasmic cargoes to lysosomes for digestion. The process is a major mechanism for turnover of cellular constituents and is therefore critical for maintaining cellular homeostasis. Macroautophagy is characteristically distinct from other forms of autophagy due to the formation of double-membraned vesicles termed autophagosomes which encapsulate cargoes prior to fusion with lysosomes. Autophagosomes contain an integral membrane-bound form (LC3-II) of the microtubule-associated protein 1 light chain 3 β (MAP1LC3B), which has become a gold-standard marker to detect accumulation of autophagosomes and thereby changes in macroautophagy. Due to the role played by macroautophagy in various diseases, the detection of autophagosomes in tissue sections is frequently desired. To date, however, the detection of endogenous LC3-II on paraffin-embedded tissue sections has proved problematic. We report here a simple, optimized and validated method for the detection of LC3-II by immunohistochemistry in human and mouse tissue samples that we believe will be a useful resource for those wishing to study macroautophagy ex vivo.  相似文献   

10.
Macroautophagy is primarily a degradative process that cells use to break down their own components to recycle macromolecules and provide energy under stress conditions, and defects in macroautophagy lead to a wide range of diseases. Atg9, conserved from yeast to mammals, is the only identified transmembrane protein in the yeast core macroautophagy machinery required for formation of the sequestering compartment termed the autophagosome. This protein undergoes dynamic movement between the phagophore assembly site (PAS), where the autophagosome precursor is nucleated, and peripheral sites that may provide donor membrane for expansion of the phagophore. Atg9 is a phosphoprotein that is regulated by the Atg1 kinase. We used stable isotope labeling by amino acids in cell culture (SILAC) to identify phosphorylation sites on this protein and identified an Atg1-independent phosphorylation site at serine 122. A nonphosphorylatable Atg9 mutant showed decreased autophagy activity, whereas the phosphomimetic mutant enhanced activity. Electron microscopy analysis suggests that the different levels of autophagy activity reflect differences in autophagosome formation, correlating with the delivery of Atg9 to the PAS. Finally, this phosphorylation regulates Atg9 interaction with Atg23 and Atg27.  相似文献   

11.
《Autophagy》2013,9(6):963-969
(Macro)Autophagy is a phylogenetically conserved membrane-trafficking process that functions to deliver cytoplasmic cargoes to lysosomes for digestion. The process is a major mechanism for turnover of cellular constituents and is therefore critical for maintaining cellular homeostasis. Macroautophagy is characteristically distinct from other forms of autophagy due to the formation of double-membraned vesicles termed autophagosomes which encapsulate cargoes prior to fusion with lysosomes. Autophagosomes contain an integral membrane-bound form (LC3-II) of the microtubule-associated protein 1 light chain 3 β (MAP1LC3B), which has become a gold-standard marker to detect accumulation of autophagosomes and thereby changes in macroautophagy. Due to the role played by macroautophagy in various diseases, the detection of autophagosomes in tissue sections is frequently desired. To date, however, the detection of endogenous LC3-II on paraffin-embedded tissue sections has proved problematic. We report here a simple, optimized and validated method for the detection of LC3-II by immunohistochemistry in human and mouse tissue samples that we believe will be a useful resource for those wishing to study macroautophagy ex vivo.  相似文献   

12.
《Autophagy》2013,9(1):28-45
Macroautophagy is an intracellular catabolic process involved in the formation of multiple membrane structures ranging from phagophores to autophagosomes and autolysosomes. Dysfunction of macroautophagy is implicated in both physiological and pathological conditions. To date, 38 autophagy-related (ATG) genes have been identified as controlling these complicated membrane dynamics during macroautophagy in yeast; approximately half of these genes are clearly conserved up to human, and there are additional genes whose products function in autophagy in higher eukaryotes that are not found in yeast. The function of the ATG proteins, in particular their ability to interact with a number of macroautophagic regulators, is modulated by posttranslational modifications (PTMs) such as phosphorylation, glycosylation, ubiquitination, acetylation, lipidation, and proteolysis. In this review, we summarize our current knowledge of the role of ATG protein PTMs and their functional relevance in macroautophagy. Unraveling how these PTMs regulate ATG protein function during macroautophagy will not only reveal fundamental mechanistic insights into the regulatory process, but also provide new therapeutic targets for the treatment of autophagy-associated diseases.  相似文献   

13.
Macroautophagy is a cellular process whereby the cell sequesters and recycles cytosolic constituents in a lysosome-dependent manner. It has also been implicated in a number of disorders, including cancer and neurodegeneration. Although a previous report that AGS3 over-expression promotes macroautophagy suggests a stimulatory role of AGS3 in this process, we have found that knock-down of AGS3, unexpectedly, also induces macroautophagy, indicating an inhibitory function of endogenous AGS3 in macroautophagy. Interestingly, AGS3 phosphorylation is decreased upon induction of mammalian target of rapamycin (mTOR)-dependent macroautophagy. Moreover, unlike wild-type AGS3, over-expression of an AGS3 mutant lacking this modification fails to enhance macroautophagic activity. These observations imply that AGS3 phosphorylation may participate in the modulation of macroautophagy.  相似文献   

14.
Macroautophagy is a regulated bulk degradation process of cellular components, mainly long-lived proteins or cytoplasmic organelles. Nutrient depletion is a classic inducer of macroautophagy. In this report, we have induced heat-mediated macroautophagy in several cell lines in the absence of nutrient depletion. Heat treatment increased the autophagic markers LC3-I and LC3-II at the protein levels. Interestingly, expression of a constitutively active HSF1 mutant suppressed basal LC3-II protein level and heat-induced increase of LC3-II. Our results provide evidence that heat is a potent inducer of macroautophagy in mammalian cells, and implicate the negative role of active HSF1 in this process.  相似文献   

15.
Macroautophagy maintains cellular homeostasis through targeting cytoplasmic contents and organelles into autophagosomes for degradation. This process begins with the assembly of protein complexes on isolation membrane to initiate the formation of autophagosome, followed by its nucleation, elongation and maturation. Fusion of autophagosomes with lysosomes then leads to degradation of the cargo. In the past decade, significant advances have been made on the identification of molecular players that are implicated in various stages of macroautophagy. Post-translational modifications of macroautophagy regulators have also been demonstrated to be critical for the selective targeting of cytoplasmic contents into autophagosomes. In addition, recent demonstration of distinct macroautophagy regulators has led to the identification of different subtypes of macroautophagy. Since deregulation of macroautophagy is implicated in diseases including neurodegenerative disorders, cancers and inflammatory disorders, understanding the molecular machinery of macroautophagy is crucial for elucidating the mechanisms by which macroautophagy is deregulated in these diseases, thereby revealing new potential therapeutic targets and strategies. Here we summarize current knowledge on the regulation of mammalian macroautophagy machineries and their disease-associated deregulation.  相似文献   

16.
17.
Olga Baron 《Autophagy》2018,14(4):722-723
Macroautophagy/autophagy influences onset and progression of several human neurodegenerative diseases, because of its critical role as a regulator of neuronal proteostasis and organelle quality control. In many neurodegenerative diseases, impairment in autophagy is thought to play a fundamental part in the terminal phases of cellular degeneration and death. However, the ultimate mechanism of neuronal cell death remains elusive. In a recent study we have identified a new form of regulated cell death, which arises upon autophagy inhibition.  相似文献   

18.
Ding WX  Yin XM 《Autophagy》2008,4(2):141-150
Based on a functional categorization, proteins may be grouped into three types and sorted to either the proteasome or the macroautophagy pathway for degradation. The two pathways are mechanistically connected but their capacity seems different. Macroautophagy can degrade all forms of misfolded proteins whereas proteasomal degradation is likely limited to soluble ones. Unlike the bulk protein degradation that occurs during starvation, autophagic degradation of misfolded proteins can have a degree of specificity, determined by ubiquitin modification and the interactions of p62/SQSTM1 and HDAC6. Macroautophagy is initiated in response to endoplasmic reticulum (ER) stress caused by misfolded proteins, via the ER-activated autophagy (ERAA) pathway, which activates a partial unfolded protein response involving PERK and/or IRE1, and a calcium-mediated signaling cascade. ERAA serves the function of mitigating ER stress and suppressing cell death, which may be explored for controlling protein conformational diseases. Conversely, inhibition of ERAA may be explored for sensitizing resistant tumor cells to cytotoxic agents.  相似文献   

19.
《Autophagy》2013,9(8):892-903
Macroautophagy is a catabolic process that maintains cellular homeostasis and protects cells against various external stresses including starvation. Except for the identification of the Akt-mTORC1 pathway as a major negative regulator, little is known about signaling networks that control macroautophagy under optimal growth conditions. Therefore, we screened a human kinome siRNA library for siRNAs that increase the number of autophagosomes in normally growing MCF-7 human breast carcinoma cells, and identified 10 kinases as regulators of constitutive macroautophagy. Further analysis of these kinases with respect to the autophagic flux, kinase signaling and endolysosomal function identified WNK2 as a positive regulator of autophagosome maturation and nine others as macroautophagy inhibitors. The depletion of MK2, PACSIN1, DAPK2, CDKL3 and SCYL1 functioned upstream of Akt-mTORC1 pathway, whereas CSNK1A1, BUB1, PKLR and NEK4 suppressed autophagosome formation downstream or independent of mTORC1. Importantly, all identified kinases except for BUB1 regulated macroautophagy also in immortalized MCF-10A breast epithelial cells. The kinases identified here shed light to the complex regulation of macroautophagy and open new possibilities for its pharmacological manipulation.  相似文献   

20.
Diversity of signaling controls of macroautophagy in mammalian cells   总被引:4,自引:0,他引:4  
Macroautophagy is a major lysosomal catabolic process conserved from yeast to human. The formation of autophagic vacuoles is stimulated by a variety of intracellular and extracellular stress situations including amino acid starvation, aggregation of misfolded proteins, and accumulation of damaged organelles. Several signaling pathways control the formation of autophagic vacuoles. As some of them are engaged in the control of protein synthesis or cell survival this suggests that macroautophagy is intimately associated with the execution of cell proliferation and cell death programs. Whether or not these different signaling pathways converge to a unique point to trigger the formation of autophagic vacuole remains an open question.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号