首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New drugs introduced to the market every year represent a privileged structure for a particular biological target. These new chemical entities (NCEs) provide insights into molecular recognition and also serve as leads for designing future new drugs. This review covers the synthesis of twenty-six NCEs that were launched or approved worldwide in 2012 and two additional drugs which were launched at the end of 2011.  相似文献   

2.
New drugs are introduced to the market every year and each represents a privileged structure for its biological target. These new chemical entities (NCEs) provide insights into molecular recognition and also serve as leads for designing future new drugs. This review covers the synthesis of 26 NCEs that were launched in the world in 2011.  相似文献   

3.
New drugs are introduced to the market every year and each represents a privileged structure for its biological target. These new chemical entities (NCEs) provide insights into molecular recognition and also serve as leads for designing future new drugs. This review covers the synthesis of 15 NCEs that were launched anywhere in the world in 2010.  相似文献   

4.
New drugs introduced to the market every year represent privileged structures for particular biological targets. These new chemical entities (NCEs) provide insight into molecular recognition and also serve as leads for designing future new drugs. This annual review covers the synthesis of thirty-seven NCEs that were approved for the first time in 2014 and one drug which was approved in 2013 and was not covered in a previous edition of this review.  相似文献   

5.
Non‐consumptive effects (NCEs) – changes in prey behavior or physiology in response to predator threat – are common and can be as strong as consumptive effects. However, our knowledge of NCEs in arthropod systems is lacking. Factors related to study organism and environment have the potential to influence the occurrence and magnitude of NCEs in arthropod systems. While factors such as coevolutionary history of natural enemies and their prey, predator cue, predator or prey feeding mode, and refuge availability have been theoretically and empirically examined, no trends have been proposed for arthropods. We compiled 62 studies, yielding 128 predator–prey interactions, which explicitly examined NCEs in experiments where arthropods were identified to species, using a previously published database of papers from 1990 to 2005 and a new database of papers published from 2006 to 2015. Using these data, we conducted a meta‐analysis to explore the influence of organismal and environmental characteristics on the magnitude of predator NCEs. Our analysis addressed the following three questions. 1) Does predator–prey coevolution give rise to stronger NCEs than when predator and prey species did not coevolve? 2) What influence does habitat type and refuge availability have on NCEs? 3) How do predator characteristics (cue type, hunting mode and life stage) and prey characteristics (mobility, life stage, specialization, gregariousness and feeding mode) influence NCEs? We found that while NCEs were similar across most measured characteristics, NCEs on prey activity were significantly stronger when predator and prey shared an evolutionary history. Our results support growing evidence that NCEs have a negative effect on prey traits and that behavioral NCEs are stronger than physiological ones. Additional studies are needed to be confident in any emerging patterns, therefore we identify key gaps in the literature on NCEs in arthropod systems and discuss ideas for moving forward.  相似文献   

6.
A lot of resources and efforts have been directed to synthesizing potentially useful new chemical entities (NCEs) by pharmaceutical scientists globally. Detailed physicochemical characterization of NCEs in an industrial setup begins almost simultaneously with preclinical testing. Most NCEs possess poor water solubility posing bioavailability issues during initial preclinical screening, sometimes resulting in dropping out of an NCE with promising therapeutic activity. Selection of right formulation approach for an NCE, based on its physicochemical properties, can aid in improving its solubility-related absorption and bioavailability issues. The review focuses on preclinical formulations stressing upon different preclinical formulation strategies and deciphers the understanding of formulation approaches that could be employed. It also provides detailed information related to a vast pool of excipients available today, which is of immense help in designing preclinical formulations. Few examples mentioned, throw light on key aspects of preclinical formulation development. The review will serve as an important guide for selecting the right strategy to improve bioavailability of NCEs for academic as well as industrial formulation scientists.  相似文献   

7.
Defensive modifications in prey traits that reduce predation risk can also have negative effects on prey fitness. Such nonconsumptive effects (NCEs) of predators are common, often quite strong, and can even dominate the net effect of predators. We develop an intuitive graphical model to identify and explore the conditions promoting strong NCEs. The model illustrates two conditions necessary and sufficient for large NCEs: (1) trait change has a large cost, and (2) the benefit of reduced predation outweighs the costs, such as reduced growth rate. A corollary condition is that potential predation in the absence of trait change must be large. In fact, the sum total of the consumptive effects (CEs) and NCEs may be any value bounded by the magnitude of the predation rate in the absence of the trait change. The model further illustrates how, depending on the effect of increased trait change on resulting costs and benefits, any combination of strong and weak NCEs and CEs is possible. The model can also be used to examine how changes in environmental factors (e.g., refuge safety) or variation among predator–prey systems (e.g., different benefits of a prey trait change) affect NCEs. Results indicate that simple rules of thumb may not apply; factors that increase the cost of trait change or that increase the degree to which an animal changes a trait, can actually cause smaller (rather than larger) NCEs. We provide examples of how this graphical model can provide important insights for empirical studies from two natural systems. Implementation of this approach will improve our understanding of how and when NCEs are expected to dominate the total effect of predators. Further, application of the models will likely promote a better linkage between experimental and theoretical studies of NCEs, and foster synthesis across systems.  相似文献   

8.
Gutteridge WE 《Parassitologia》1999,41(1-3):449-452
In the absence of vaccines, new chemotherapies are needed urgently to help in the prevention and control of malaria. A number of strategies are being followed world-wide in attempts to discover and develop them: (a) resurrecting 'forgotten' molecules; (b) developing new formulations of existing products; (c) finding ways to bypass known toxicological limitations of existing products; (d) looking for combinations of existing products; (e) discovering molecules which reverse the resistance phenotype; (f) identifying 'old' chemical entities (OCEs) for new, antimalarial, indications; (g) discovering new chemical entities (NCEs) directed towards already exploited biological targets; (h) discovering NCEs directed to novel biological targets. Examples of such strategies are given below, together with an indication of their advantages and limitations.  相似文献   

9.
Secondary pharmacodynamic studies of new chemical entities (NCEs) play a critical role in support of efficient drug discovery. In an era in which speed and efficiency are the norm for pharmaceutical discovery, the need to identify NCEs with greater patient tolerability continues to increase. Early use of secondary pharmacodynamic models (in vivo and in vitro) provides the foundation for critical, early decisions regarding lead molecules. Scientifically robust, non-GLP (good laboratory practices) secondary pharmacodynamic studies can eliminate compounds or structural series with undesirable profiles early, and may prove useful in defining structure-activity relationships (SARs) with regards to off-target effects.  相似文献   

10.
Non‐consumptive predator effects (NCEs) are now widely recognised for their capacity to shape ecosystem structure and function. Yet, forecasting the propagation of these predator‐induced trait changes through particular communities remains a challenge. Accordingly, focusing on plasticity in prey anti‐predator behaviours, we conceptualise the multi‐stage process by which predators trigger direct and indirect NCEs, review and distil potential drivers of contingencies into three key categories (properties of the prey, predator and setting), and then provide a general framework for predicting both the nature and strength of direct NCEs. Our review underscores the myriad factors that can generate NCE contingencies while guiding how research might better anticipate and account for them. Moreover, our synthesis highlights the value of mapping both habitat domains and prey‐specific patterns of evasion success (‘evasion landscapes’) as the basis for predicting how direct NCEs are likely to manifest in any particular community. Looking ahead, we highlight two key knowledge gaps that continue to impede a comprehensive understanding of non‐consumptive predator–prey interactions and their ecosystem consequences; namely, insufficient empirical exploration of (1) context‐dependent indirect NCEs and (2) the ways in which direct and indirect NCEs are shaped interactively by multiple drivers of context dependence.  相似文献   

11.
Coreen Forbes  Edd Hammill 《Oikos》2013,122(12):1662-1668
The total effect of predators on prey is a combination of direct consumption, and non‐consumptive effects (NCEs), such as predator‐induced changes to prey morphology, behaviour and life history. Past research into NCEs has tended to focus on pair‐wise interactions between predators and prey, while in natural ecosystems, species exist in complex communities with several trophic levels made up of multiple autotrophic and heterotropic species. To address how predator NCEs alter the photosynthetic and heterotrophic components of communities, we exposed microbial microcosms to one of three predator treatments: live predators (full predator effect), freeze‐killed predators (NCEs only) or no predators (control), and incubated them under either 12 h:12 h light:dark conditions or continual darkness. Under 12 h:12 h light:dark conditions, NCEs‐only communities never differed from predator‐free communities, but differed from live predator communities. Under conditions of continual darkness, the structure of NCEs‐only communities differed from predator‐free controls, but not from live predator communities, suggesting NCEs can be strong enough to structure communities. Predation threat may cause certain prey to induce defences, such as reductions in movement, which make them less competitive in a community setting. This reduction in competitive ability could lead to these species being driven to extinction through interspecific competition, resulting in similar communities to those in which live predators are present. Heterotrophic species whose rates of resource acquisition depend on movement rates may be affected to a greater extent than autotrophs by predator‐induced reductions in movement, accounting for our observed differences in predator NCEs in ‘dark’ and ‘light’ communities. Our results suggest that the community‐level consequences of fear are greater in the dark. Synthesis Predators affect prey through consumptive and non‐consumptive effects (NCEs) such as alterations to prey behaviour, morphology, and life history. However, predators and prey do not exist in isolated pairs, but in complex communities where they interact with many other species. Using a long term study (>10 predator generations), we show that predator NCEs alone can alter community structure under conditions of darkness, but not in a 12h:12h light:dark cycle. Our results demonstrate for the first time that although the community‐level consequences of predator NCEs may be dramatic, they depend upon the abiotic conditions of the ecosystem.  相似文献   

12.
Wen  Jian  Ueno  Takatoshi 《BioControl》2021,66(6):813-824

Predator non-consumptive effects (NCEs) have been well studied in many ecosystems and NCEs can alter the behavior, morphology and life history of prey, producing strong trait-mediated indirect effects (TMIEs) on host plants. However, studies involving the application of NCEs to control pests in the field, and instances of combined laboratory bioassay and field practice are rare. Here, we examine the development, reproduction and behavior of small brown planthoppers, Laodelphax striatellus (Fallén), when exposed to predator cues from caged predators (Paederus fuscipes Curtis), or predator body extracts (in solvents with different polarities) in the laboratory. Field foliage sprays of these extracts were also used to test their effects on the L. striatellus population and rice plant biomass. Nymph development and egg hatch rate in L. striatellus were not influenced, but adult longevity was shorter, and fecundity and weight gain were lower, when nymphs were exposed to the predator cues. Adults exposed to predator cues also gained less weight and laid fewer eggs. The poorer developmental and reproductive performances might result from lower activity levels observed in threatened L. striatellus. The field foliage sprays of predator cues decreased L. striatellus abundance and increased rice plant biomass, suggesting their possible application for pest control. Predator cues extracted using chloroform increased stronger NCEs and TMIEs, indicating their non-polar characteristics. Our studies advance the understanding of how NCEs shape the life history and behavior of L. striatellus and improve rice growth, laying new foundations for future research on novel pest control materials and methods.

  相似文献   

13.
The risk of predation can drive trophic cascades by causing prey to engage in antipredator behavior (e.g. reduced feeding), but these behaviors can be energetically costly for prey. The effects of predation risk on prey (nonconsumptive effects, NCEs) and emergent indirect effects on basal resources should therefore depend on the ecological context (e.g. resource abundance, prey state) in which prey manage growth/predation risk tradeoffs. Despite an abundance of behavioral research and theory examining state‐dependent responses to risk, there is a lack of empirical data on state‐dependent NCEs and their impact on community‐level processes. We used a rocky intertidal food chain to test model predictions for how resources levels and prey state (age/size) shape the magnitude of NCEs. Risk cues from predatory crabs Carcinus maenas caused juvenile and sub‐adult snails Nucella lapillus to increase their use of refuge habitats and decrease their growth and per capita foraging rates on barnacles Semibalanus balanoides. Increasing resource levels (high barnacle density) and prey state (sub‐adults) enhanced the strength of NCEs. Our results support predictions that NCEs will be stronger in resource‐rich systems that enhance prey state and suggest that the demographic composition of prey populations will influence the role of NCEs in trophic cascades. Contrary to theory, however, we found that resources and prey state had little to no effect on snails in the presence of predation risk. Rather, increases in NCE strength arose because of the strong positive effects of resources and prey state on prey foraging rates in the absence of risk. Hence, a common approach to estimating NCE strength – integrating measurements of prey traits with and without predation risk into a single metric – may mask the underlying mechanisms driving variation in the strength and relative importance of NCEs in ecological communities.  相似文献   

14.
Predator body size often indicates predation risk, but its significance in non-consumptive effects (NCEs) and predator risk assessment has been largely understudied. Although studies often recognize that predator body size can cause differing cascading effects, few directly examine prey foraging behavior in response to individual predator sizes or investigate how predator size is discerned. These mechanisms are important since perception of the risk imposed by predators dictates behavioral responses to predators and subsequent NCEs. Here, we evaluate the role of predator body size and biomass on risk assessment and the magnitude of NCEs by investigating mud crab foraging behavior and oyster survival in response to differing biomasses of blue crab predators using both laboratory and field methods. Cues from high predator biomass treatments including large blue crab predators and multiple small blue crab predators decreased mud crab foraging and increased oyster survival, whereas mud crab foraging in response to a single small blue crab did not differ from controls. Mud crabs also increased refuge use in the presence of large and multiple small, but not single small, blue crab predators. Thus, both predator biomass and aggregation patterns may affect the expression of NCEs. Understanding the impact of predator biomass may therefore be necessary to successfully predict the role of NCEs in shaping community dynamics. Further, the results of our laboratory experiments were consistent with observed NCEs in the field, suggesting that data from mesocosm environments can provide insight into field situations where flow and turbulence levels are moderate.  相似文献   

15.
Non-consumptive effects (NCEs) of predators on prey can be as strong as consumptive effects (CEs) and may be driven by numerous mechanisms, including predator characteristics. Previous work has highlighted the importance of predator characteristics in predicting NCEs, but has not addressed how complex life histories of prey could mediate predator NCEs. We conducted a meta-analysis to compare the effects of predator gape limitation (gape limited or not) and hunting mode (active or sit-and-pursue) on the activity, larval period, and size at metamorphosis of larval aquatic amphibians and invertebrates. Larval prey tended to reduce their activity and require more time to reach metamorphosis in the presence of all predator functional groups, but the responses did not differ from zero. Prey metamorphosed at smaller size in response to non-gape-limited, active predators, but counter to expectations, prey metamorphosed larger when confronted by non-gape-limited, sit-and-pursue predators. These results indicate NCEs on larval prey life history can be strongly influenced by predator functional characteristics. More broadly, our results suggest that understanding predator NCEs would benefit from greater consideration of how prey life history attributes mediate population and community-level outcomes.  相似文献   

16.
Invasive predators typically have larger effects on native prey populations than native predators, yet the potential roles of their consumptive versus non-consumptive effects (CEs vs. NCEs) in structuring invaded systems remains unclear. Invasive lionfish (Pterois volitans) may have ecosystem-level effects by altering native fish grazing on benthic algae that could otherwise displace corals. Lionfish could reduce grazing by decreasing the abundance of herbivorous fishes (CEs), and/or the predation risk posed by lionfish could alter grazing behavior of fishes (NCEs). To test for these CEs, we manipulated lionfish densities on large reefs in The Bahamas and surveyed fish populations throughout June 2009–2011. In July 2011, NCEs of lionfish were measured by observing fish grazing behavior on algal-covered substrata placed in microhabitats varying in lionfish presence at different spatial scales, and quantifying any resulting algal loss. Lionfish reduced small herbivorous fish density by the end of the 2010 summer recruitment season. Grazing by small and large fishes was reduced on high-lionfish-density reefs, and small fish grazing further decreased when in the immediate presence of lionfish within-reefs. Lionfish had a negative indirect effect on algal loss, with 66–80 % less algae removed from substrata in high-lionfish-density reefs. Parrotfishes were likely driving the response of herbivorous fishes to both CEs and NCEs of lionfish. These results demonstrate the importance of considering NCEs in addition to CEs of invasive predators when assessing the effects of invasions.  相似文献   

17.
The cytogenetic effects in mice chronically fed the heterocyclic amine 2-amino-1-methyl-6-phenylimidazo[4,5b]pyridine (PhIP) were evaluated by chromosome painting, micronucleated normochromatic erythrocytes (MN NCEs) and sister chromatid exchanges (SCEs). PhIP and numerous other heterocyclic amines have been isolated from cooked foods, and many have been found to be carcinogenic in laboratory rodents. Female C57BL/6N mice were chronically fed a diet containing 0, 100, 250 or 400 ppm of PhIP beginning at 8 weeks of age. Peripheral blood and bone marrow were taken from 5 mice per treatment group at 1, 4 and 6 months from the start of exposure. PhIP was removed from the diet for a final month of the experiment, at which time blood was taken from the remaining animals. Chromosome-specific composite DNA probes for mouse chromosomes 2 and 8 were hybridized to metaphase cells from each tissue. The 1- and 4-month time points showed no statistically significant difference between the control and exposed mice for either tissue in chromosome aberration frequencies. Both MN NCEs and SCEs were analyzed at a single time point during exposure (4 months for MN NCEs and 6 months for SCEs) and again 1 month after removing PhIP from the diet. MN NCEs in the peripheral blood showed a statistically significant dose response, with all values decreasing significantly 1 month after removing PhIP from the diet. SCE frequencies in the peripheral blood showed an approximate doubling compared to control mice, and decreased to control levels 1 month after removing PhIP from the diet. SCE frequencies in the bone marrow of exposed mice showed no difference from the control animals. These results show that chronic ingestion of PhIP by female C57BL/6 mice does not produce persistent cytogenetic damage as visualized by chromosome aberrations, MN NCEs or SCEs.  相似文献   

18.
Non-consumptive effects (NCEs) of predators owing to induced changes in prey traits are predicted to influence the structure of ecological communities. However, evidence of the importance of NCEs is limited primarily to simple systems (e.g. two to four species) over relatively short periods (e.g. less than one generation). We examined the NCEs of a fish predator, arising from phenotypic plasticity in zooplankton prey traits, over multiple generations of a diverse zooplankton community. The presence of fish, caged to remove consumptive effects, strongly influenced zooplankton community structure, through both direct and indirect NCE pathways, altering the abundance of many taxa by magnitudes as large as 3 to 10-fold. Presence of fish affected different species of cladocerans and copepods both positively and negatively. A particularly striking result was the reversal of dominance in copepod taxa: presence of fish reduced the ratio of calanoids to cyclopoids from 6.3 to 0.43. Further, the NCE of fish had a strong negative trophic cascade to zooplankton resources (phytoplankton). To our knowledge, this is the first experiment to show that NCEs can influence the abundance of multiple prey species over time spans of multiple prey generations. Our findings demonstrate that adaptive phenotypic plasticity of individuals can scale-up to affect the structure of ecological communities.  相似文献   

19.
Castration of male rats causes a rapid loss of their normal erectile response to inaccessible estrous females. Previous studies had demonstrated that these noncontact erections (NCEs), a putative sign of sexual arousal, could be restored by systemic treatment with testosterone (T) or dihydrotestosterone (DHT), but not estradiol (E). We examined whether androgen delivered to the medial amygdala (MeA) of castrated rats would maintain NCE. In Experiment 1, males received bilateral cannulae filled with T, DHT, or E directed at the MeA. Control males had the same hormone-filled cannulae implanted subcutaneously and blank cannulae in the MeA, or they received T in the anterior forebrain. During the 2 weeks after surgery, males were tested twice for NCE and copulation. About half the males with androgens in the MeA had NCEs 1 week after castration, but few responded a week later. Closer proximity of androgen implants to the posterodorsal MeA (MeApd) predicted shorter NCE latencies. No males with subcutaneous androgen had NCEs in either test, and few anterior forebrain-implanted males did. Some males receiving E in MeA or subcutaneously had NCE in each test. In copulation tests, the type of steroid treatment did not affect the incidence of ejaculation or most measures of copulation, and the proximity of cannulae to MeApd predicted only the time from ejaculation to the occurrence of NCE during the postejaculatory interval. Experiment 2 showed that NCEs displayed by males with androgen in MeA occurred in response to estrous females, not spontaneously. The results suggest that androgens, perhaps augmented by estrogen, act in the posterodorsal MeA to facilitate NCE and its associated arousal.  相似文献   

20.
Non-consumptive effects (NCEs) of predators occur as prey alters their habitat use and foraging decisions to avoid predation. Although NCEs are recognized as being important across disparate ecosystems, the factors influencing their strength and importance remain poorly understood. Ecological context, such as time of day, predator identity, and prey condition, may modify how prey species perceive and respond to risk, thereby altering NCEs. To investigate how predator identity affects foraging of herbivorous coral reef fishes, we simulated predation risk using fiberglass models of two predator species (grouper Mycteroperca bonaci and barracuda Sphyraena barracuda) with different hunting modes. We quantified how predation risk alters herbivory rates across space (distance from predator) and time (dawn, mid-day, and dusk) to examine how prey reconciles the conflicting demands of avoiding predation vs. foraging. When we averaged the effect of both predators across space and time, they suppressed herbivory similarly. Yet, they altered feeding differently depending on time of day and distance from the model. Although feeding increased strongly with increasing distance from the predators particularly during dawn, we found that the barracuda model suppressed herbivory more strongly than the grouper model during mid-day. We suggest that prey hunger level and differences in predator hunting modes could influence these patterns. Understanding how context mediates NCEs provides insight into the emergent effects of predator–prey interactions on food webs. These insights have broad implications for understanding how anthropogenic alterations to predator abundances can affect the spatial and temporal dynamics of important ecosystem processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号