首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-beta superfamily. A critical role for BMP signaling in the development of the metanephric kidney is supported by a growing number of studies using in vitro assays and in vivo animal models. Here we review current knowledge of BMPs, BMP receptors and regulators of the BMP signaling pathway in the developing kidney. We highlight major gaps in our knowledge of the roles of BMP signaling in the development of the normal and abnormal kidney and identify areas and techniques likely to improve our understanding.  相似文献   

2.
3.
The BMP signaling and in vivo bone formation   总被引:12,自引:0,他引:12  
Cao X  Chen D 《Gene》2005,357(1):1-8
Bone morphogenetic proteins (BMPs) are multi-functional growth factors that belong to the transforming growth factor beta (TGFbeta) superfamily. The roles of BMPs in embryonic development and cellular functions in postnatal and adult animals have been extensively studied in recent years. Signal transduction studies have revealed that Smads 1, 5 and 8 are the immediate downstream molecules of BMP receptors and play a central role in BMP signal transduction. Studies from transgenic and knockout mice and from animals and humans with naturally occurring mutations in BMPs and their signaling molecules have shown that BMP signaling plays critical roles in bone and cartilage development and postnatal bone formation. BMP activities are regulated at different molecular levels. Tissue-specific knockout of a specific BMP ligand, a subtype of BMP receptors or a specific signaling molecule is required to further determine the specific role of a BMP ligand, receptor or signaling molecule in a particular tissue.  相似文献   

4.
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-beta (TGF-beta) superfamily and regulate the formation of cartilage and bone tissues as well as other key events during development. TGF-beta superfamily signaling is mediated intracellularly by Smad proteins, some of which can translocate into the cell nucleus and influence gene expression. Although much progress has been made in understanding how TGF-beta superfamily signaling regulates expression of target genes, little formal proof has been presented regarding the intracellular distribution of the Smad proteins before their entry into the nucleus. In the literature, non-nuclear Smad proteins are generally referred to as cytoplasmic. Using confocal microscopy, we here show for the first time that immunofluorescent labeling of Smad5, one of the Smad proteins associated with BMP signaling, colocalizes with the mitochondrion-specific probe MitoTracker, demonstrating a mitochondrial distribution of Smad5 in non-stimulated chondroprogenitor cells.  相似文献   

5.
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-beta (TGF-beta) superfamily that play important roles in bone formation, embryonic patterning, and epidermal-neural cell fate decisions. BMPs signal through pathway specific mediators such as Smads1 and 5, but the upstream regulation of BMP-specific Smads has not been fully characterized. Here we report the identification of SANE (Smad1 Antagonistic Effector), a novel protein with significant sequence similarity to nuclear envelop proteins such as MAN1. SANE binds to Smad1/5 and to BMP type I receptors and regulates BMP signaling. SANE specifically blocks BMP-dependent signaling in Xenopus embryos and in a mammalian model of bone formation but does not inhibit the TGF-beta/Smad2 pathway. Inhibition of BMP signaling by SANE requires interaction between SANE and Smad1, because a SANE mutant that does not bind Smad1 does not inhibit BMP signaling. Furthermore, inhibition appears to be mediated by inhibition of BMP-induced Smad1 phosphorylation, blocking ligand-dependent nuclear translocation of Smad1. These studies define a new mode of regulation for intracellular BMP/Smad1 signaling.  相似文献   

6.
Bone morphogenetic proteins (BMPs) are phylogenetically conserved signaling molecules that belong to the transforming growth factor (TGF)-beta superfamily, and are involved in the cascades of body patterning and morphogenesis. The activities of BMPs are precisely regulated by certain classes of molecules that are recently recognized as BMP antagonists. BMP antagonists function through direct association with BMPs, thus prohibiting BMPs from binding their cognate receptors. In this review, the classification and functions of BMP antagonists will be discussed, especially focusing on the new family of tissue-specific BMP antagonists composed of uterine sensitization-associated gene 1 (USAG-1) and sclerostin.  相似文献   

7.
The transforming growth factor-beta (TGF-beta) superfamily member, Xenopus nodal-related 3 (Xnr3), induces neural tissues through inhibition of bone morphogenetic proteins (BMPs). We recently identified an inhibitory mechanism in which the pro-region of Xenopus tropicalis nodal-related 3 (Xtnr3) physically interacts with BMP ligands. Here, we show that disulfide-linked heterodimerization does not contribute to BMP inhibition by Xtnr3 and that the Xtnr3 mature region, overexpression of which can induce the same phenotype as full-length Xtnr3, does not inhibit BMP signaling. Furthermore, we find that the BMP-inhibitory domains of Xtnr3 are separately located in the N- and C-terminal regions of the pro-region. These results indicate the pro-region of Nodal-related 3 is both necessary and sufficient for its BMP inhibition.  相似文献   

8.
Bone morphogenetic proteins (BMPs) were first studied as growth factors or morphogens of the transforming growth factor-beta superfamily. These growth molecules, originally associated with bone and cartilage development, are now known to play an important role in morphogenesis and homeostasis in many other tissues. More recently, significant contributions from BMPs, their receptors, and interacting molecules have been linked to carcinogenesis and tumor progression. On the other hand, BMPs can sometimes function as a tumor suppressor. Our report highlights these new roles in the pathogenesis of cancer that may suggest novel targets for therapeutic intervention.  相似文献   

9.
10.
骨形态发生蛋白(bone morphogenetic proteins, BMPs)是一类在发育过程中起重要作用的分子。除BMP-1外,其他BMP分子均属于转化生长因子-β(transforming growth factor-β, TGF-β)/BMP超家族的发育信号分子。在胚胎发育过程中,这些信号分子通过形成浓度梯度对背—腹轴各向异性分化进行调控。它们借助细胞表面受体的识别进行信号传导,参与调控细胞分化、增殖等活动。而BMP-1则属于细胞外基质金属蛋白酶超家族中的Tolloid蛋白酶家族。BMP-1通过水解其他BMP的抑制物(如脊索发生素,Chordin),达到促进其他BMP信号传导的目的。BMP-1、BMP和Chordin三者通过相互制约与相互促进等一系列作用,在背—腹沿线建立起稳定的BMP信号梯度。本文就BMP浓度梯度的形成及其稳态维持的机制进行回顾与总结。并在此基础上,对各个物种间BMP浓度梯度形成机制的异同,以及可能存在的协同进化进行比较、分析和讨论。  相似文献   

11.
12.
BMP/Smad信号通路与哺乳动物卵泡发生   总被引:2,自引:0,他引:2  
王伟  王少兵  徐银学 《遗传》2009,31(3):245-254
BMPs属于TGF-b超家族成员, 在调节哺乳动物的生长、细胞增殖和分化等方面有很广泛的生物学功能。越来越多的证据显示, BMPs在雌性哺乳动物生殖, 尤其在卵泡发生过程中发挥重要作用。Smads蛋白是BMP家族细胞内信号转导分子, 可将BMPs胞外信号从细胞膜传递入细胞核。文章对BMPs、BMP/Smad信号通路和BMP如何被调节进行概述, 并重点对BMP/Smad信号通路在卵泡发生过程中所起的调控作用进行综述。  相似文献   

13.
Bone morphogenetic proteins (BMPs) are pleiotropic growth and differentiation factors belonging to the transforming growth factor-beta (TGF-beta) superfamily. Signals of the TGF-beta-like ligands are propagated to the nucleus through specific interaction of transmembrane serine/threonine kinase receptors and Smad proteins. GCCGnCGC has been suggested as a consensus binding sequence for Drosophila Mad regulated by a BMP-like ligand, Decapentaplegic. Smad1 is one of the mammalian Smads activated by BMPs. Here we show that Smad1 binds to this motif upon BMP stimulation in the presence of the common Smad, Smad4. The binding affinity is likely to be relatively low, because Smad1 binds to three copies of the motif weakly, but more repeats of the motif significantly enhance the binding. Heterologous reporter genes (GCCG-Lux) with multiple repeats of the motif respond to BMP stimulation but not to TGF-beta or activin. Mutational analyses reveal several bases critical for the responsiveness. A natural BMP-responsive reporter, pTlx-Lux, is activated by BMP receptors in P19 cells but not in mink lung cells. In contrast, GCCG-Lux responds to BMP stimulation in both cells, suggesting that it is a universal reporter that directly detects Smad phosphorylation by BMP receptors.  相似文献   

14.
Pattern formation and growth must be tightly coupled during embryonic development. In vertebrates, however, little is known of the molecules that serve to link these two processes. Here we show that bone morphogenetic proteins (BMP) coordinate the acquisition of pattern information and the stimulation of proliferation in the embryonic spinal neural tube. We have blocked BMP and transforming growth factor-β superfamily (TGFβ) function in the chick embryo using Noggin, a BMP antagonist, and siRNA against Smad4. We show that BMPs/TGFβs are necessary to regulate pattern formation and the specification of neural progenitor populations in the dorsal neural tube. BMPs also serve to establish discrete expression domains of Wnt ligands, receptors, and antagonists along the dorsal-ventral axis of the neural tube. Using the extracellular domain of Frizzled 8 to block Wnt signaling and Wnt3a ligand misexpression to activate WNT signaling, we demonstrate that the Wnt pathway acts mitogenically to expand the populations of neuronal progenitor cells specified by BMP. Thus, BMPs, acting through WNTs, couple patterning and growth to generate dorsal neuronal fates in the appropriate proportions within the neural tube.  相似文献   

15.
Bone morphogenetic protein   总被引:3,自引:0,他引:3  
Bone morphogenetic proteins (BMPs) are multi-functional growth factors belonging to the transforming growth factor-beta superfamily. It has been demonstrated that BMPs had been involved in the regulation of cell proliferation, survival, differentiation and apoptosis. However, their hallmark ability is that play a pivotal role in inducing bone, cartilage, ligament, and tendon formation at both heterotopic and orthotopic sites. In this review, we mainly concentrate on BMP structure, function, molecular signaling and potential medical application.  相似文献   

16.
Inhibin is an antagonist of bone morphogenetic protein signaling   总被引:7,自引:0,他引:7  
  相似文献   

17.
Divergence and convergence of TGF-beta/BMP signaling   总被引:41,自引:0,他引:41  
The transforming growth factor-beta (TGF-beta) superfamily includes more than 30 members which have a broad array of biological activities. TGF-beta superfamily ligands bind to type II and type I serine/threonine kinase receptors and transduce signals via Smad proteins. Receptor-regulated Smads (R-Smads) can be classified into two subclasses, i.e. those activated by activin and TGF-beta signaling pathways (AR-Smads), and those activated by bone morphogenetic protein (BMP) pathways (BR-Smads). The numbers of type II and type I receptors and Smad proteins are limited. Thus, signaling of the TGF-beta superfamily converges at the receptor and Smad levels. In the intracellular signaling pathways, Smads interact with various partner proteins and thereby exhibit a wide variety of biological activities. Moreover, signaling by Smads is modulated by various other signaling pathways allowing TGF-beta superfamily ligands to elicit diverse effects on target cells. Perturbations of the TGF-beta/BMP signaling pathways result in various clinical disorders including cancers, vascular diseases, and bone disorders.  相似文献   

18.
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor beta (TGF-beta) superfamily of ligands, which regulate many mammalian physiologic and pathophysiologic processes. BMPs exert their effects through type I and type II serine/threonine kinase receptors and the Smad intracellular signaling pathway. Recently, the glycosylphosphatidylinositol (GPI)-anchored protein DRAGON was identified as a co-receptor for BMP signaling. Here, we investigate whether a homologue of DRAGON, repulsive guidance molecule (RGMa), is similarly involved in the BMP signaling pathway. We show that RGMa enhances BMP, but not TGF-beta, signals in a ligand-dependent manner in cell culture. The soluble extracellular domain of RGMa fused to human Fc (RGMa.Fc) forms a complex with BMP type I receptors and binds directly and selectively to radiolabeled BMP-2 and BMP-4. RGMa mediates BMP signaling through the classical BMP signaling pathway involving Smad1, 5, and 8, and it up-regulates endogenous inhibitor of differentiation (Id1) protein, an important downstream target of BMP signals. Finally, we demonstrate that BMP signaling occurs in neurons that express RGMa in vivo. These data are consistent with a role for RGMa as a BMP co-receptor.  相似文献   

19.
20.
BMP signaling in skeletal development   总被引:16,自引:0,他引:16  
Development of the vertebrate skeleton, a complex biological event that includes diverse processes such as formation of mesenchymal condensations at the sites of future skeletal elements, osteoblast and chondrocyte differentiation, and three dimensional patterning, is regulated by many growth factors. Bone morphogenetic proteins (BMPs), members of the TGF-beta superfamily, play a pivotal role in the signaling network and are involved in nearly all processes associated with skeletal morphogenesis. BMP signals are transduced from the plasma membrane receptors to the nucleus through both Smad pathway and non-Smad pathways, and regulated by many extracellular and intercellular proteins that interact with BMPs or components of the BMP signaling pathways. To gain a better understanding of the molecular mechanisms underlying the role of BMP in early skeletal development, it is necessary to elucidate the BMP signaling transduction pathways in chondrocytes and osteoblasts. The major objective of this review was to summarize BMP signaling pathways in the context of craniofacial, axial, and limb development. In particular, this discourse will focus on recent advances of the role of different ligands, receptors, Smads, and BMP regulators in osteoblast and chondrocyte differentiation during embryonic development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号