首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The in vitro acetylation of HMG proteins was studied using liver slices of young (18-week) and old (138-week) male rats. Acetylation of total HMG proteins is lower in old age. The incorporation of (14C) acetate into individual HMG proteins varies remarkably with advancing age. Whereas acetylation of high mol. wt. proteins (HMG 1 and 2) is higher, that of low mol. wt. proteins (HMG 14 and 17) is lower in the liver of young rats as compared to the old ones. Spermine stimulates the acetylation of HMG 1 and 14 in young and HMG 1, 2 and 14 in old age. It inhibits the acetylation of HMG 17 in both ages. Dexamethasone decreases the level of incorporation of (14C) into HMG 1 and 17 in young and HMG 14 and 17 in old rats. On the other hand, it stimulates the acetylation of HMG 14 by two-fold in young and that of HMG 1 and 2 by more than three-fold in old rats. Such alteration in the acetylation of HMG proteins may account for age-related changes in the structure and function of chromatin.  相似文献   

2.
Liver slices from young (20 weeks) and old (117 weeks) rats were incubated with [methyl-14C]methionine in the absence or presence of spermine or sodium butyrate. The high-mobility-group (HMG) non-histone proteins were extracted from the liver with perchloric acid and separated by acid-urea polyacrylamide slab gel electrophoresis. Methylation of HMG proteins decreased drastically in old rats. Whereas spermine inhibited the methylation of total HMG proteins in young rats, it had no effect in old age. On the contrary, sodium butyrate did not change the incorporation of methyl groups into total HMG proteins of young rats, but inhibited that of old rats. Particularly, the incorporation of [14C]methyl groups into HMG 2 was enhanced but into other HMGs it was reduced by both effectors in young and old age. Such discrepancies in the methylation of HMG proteins and their differential modulation by spermine and butyrate might affect the higher-order organization of chromatin and consequently destabilize the expression of genes during aging.  相似文献   

3.
The distribution of high mobility group (HMG) proteins has been studied in the liver, brain, kidney, lung, spleen, testis, thymus, and heart of young (19 weeks) and old (118 weeks) rats. These proteins were extracted with perchloric acid, fractionated by CM-Sephadex column chromatography, and analysed by acetic acid-urea polyacrylamide slab gel electrophoresis. As compared with that in young rats, the level of total HMG proteins in the old increased in liver and lung, decreased in thymus, heart, brain, and kidney, and remained unchanged in spleen and testis. In particular, the levels of HMG 1 and 2 were maximum in the thymus of young rats and dropped drastically in the old. However, the amount of HMG 17 was high in the spleen of both young and old rats, though it was comparatively higher in the former. Such age-dependent variation in the level of HMG proteins of different tissues denotes indirectly differences in the functional state of chromatin, and in growth and activity of cells, during aging.  相似文献   

4.
The in vitro acetylation of high mobility group (HMG) proteins and its modulation by sodium butyrate and hydrocortisone have been studied using liver slices of young (13-) and old (114-week-old) rats. Acetylation of total HMG proteins was significantly higher in young than old rats. HMG 1, in particular, showed greater acetylation than others. Whereas acetylation of HMG 1 and 2 decreased drastically, that of HMG 14 and 17 increased in old age. In young rats, sodium butyrate and hydrocortisone stimulated acetylation of HMG 14 and 17, and decreased that of HMG 2. Butyrate had no effect on HMG 1, but hydrocortisone decreased it. In old rats, butyrate and hydrocortisone decreased acetylation of all HMGs, except HMG 17, which was stimulated to a slight extent by butyrate.  相似文献   

5.
Phosphorylation of high mobility group (HMG) proteins and its modulation by dexamethasone were examined in vitro by incubating liver slices of young (15- ) and old (138-week) male rats with (32P) orthophosphate. HMG proteins were extracted and analyzed by acid-urea polyacrylamide gel electrophoresis. Phosphorylation of HMG proteins, particularly of HMG 2, 14 and 17 decreases drastically in old rats. Dexamethasone stimulates the phosphorylation of total HMG proteins in both ages. Individual HMG proteins vary in the extent of 32P incorporation. Such differential phosphorylation of HMG proteins and its modulation by dexamethasone may affect chromatin organization and gene expression during aging.  相似文献   

6.
The metabolism of various classes of histones and nonhistone proteins in intact nuclei and in liver chromatin of albino Wistar rats aged 1, 3, 12 and 24 months, was studied. It was shown that in the course of postnatal development the metabolism of nonhistone proteins extracted with 0.14 M NaCl in murine liver is increased. Later in ontogenesis, the incorporation of labeled precursors into proteins HMG 14 and HMG 17 decreases; the specific radioactivity of proteins HMG 1 + 2 is higher in 3- and 24-month-old animals. The intensity of metabolism of nonhistone proteins and histones is higher within the composition of the chromatin complex than in the intact nucleus at all stages of postnatal development. Among other histone proteins, histones H1 are characterized by the highest level specific radioactivity in rats of all age groups.  相似文献   

7.
8.
9.
Within 30 minutes of administration of cycloheximide to rats, rRNA synthesis in isolated liver nuclei was inhibited by approximately 50%. The nuclear contents of high mobility group (HMG) proteins, including HMG 1, 2 and 14, were found to be decreased in parallel with the inhibition of RNA synthesis while the contents of the total cellular HMG proteins remained unchanged. The role of HMG proteins in the regulation of RNA synthesis is discussed.  相似文献   

10.
The quantitative levels and phosphorylation states of the high mobility group (HMG) of proteins were investigated in bone marrow, brain, heart, kidney, liver, pancreas, spleen, testis and thymus of three groups of male Fischer 344 rats. Two groups of rats, young ad libitum (Y/AL - 1 1/2 mo.) and old ad libitum (O/AL - 28 mo.), had free access to rat chow, and a third group of old rats were maintained on a caloric restricted intake (O/CR - 28 mo.). The quantities of HMGs 1,2,14 and 17 were significantly reduced in O/AL rats compared with Y/AL rats in all tissues examined, and in many cases, the amount of HMGs of O/CR rats were increased by varying degrees from O/AL animals. In G2-phase nuclei of bone marrow, spleen and testis, phosphorylation of HMG proteins was reduced significantly in O/AL rats, but was enhanced in O/CR animals (especially HMG14). These levels of HMGs in O/CR animals, altered by age and diet dependent factors, reflect a condition which is more reminiscent of Y/AL than O/AL animals.  相似文献   

11.
12.
The phosphorylation of the high mobility group (HMG) proteins has been investigated in mouse Ehrlich ascites, L1210 and P388 leukemia cells, human colon carcinoma cells (HT-29), and Chinese hamster ovary cells. HMG 14 and 17, but not HMB 1 and 2, were phosphorylated in the nuclei of all cell lines with a serine being the site of modification for both proteins in Ehrlich ascites cells. Phosphorylation of HMG 14 and 17 was greatly reduced in cultured cells at plateau phase in comparison to log phase cells, suggesting that modification of HMG 14 and 17 is growth-associated. However, phosphorylation was not linked to DNA synthesis, since incorporation of 32P did not vary through G1 and S phase in synchronized Chinese hamster ovary cells. Treatment of HT-29 or Ehrlich ascites cells with sodium butyrate reduced HMG phosphorylation by 30 and 70%, respectively. The distribution of the phosphorylated HMG proteins in chromatin was examined using micrococcal nuclease and DNase I. 32P-HMG 14 and 17 were preferentially associated with micrococcal nuclease-sensitive regions as demonstrated by the release of a substantial fraction of the phosphorylated forms of these proteins under conditions which solubilized less than 3% of the DNA. Short digestions with DNase I did not show a marked release of 32P-HMG 14 or 17.  相似文献   

13.
The high mobility group proteins, HMG 14 and 17, have been associated with the chromatin of active genes (refs 1-8), although how they function is not known. We use sedimentation and electric dichroism to investigate the effect of HMG 14 and 17 on the condensation of chicken erythrocyte chromatin into higher order structure. We find no evidence that excess HMG 14 and 17 induce an extended configuration, either in bulk chromatin or in the chromatin of the chicken beta-globulin gene.  相似文献   

14.
High mobility group (HMG) proteins in human kidney T1 and murine L 929 cells have been investigated after exposure to heat shock at 41 degrees C and their influence on the organizational change of chromatin under heat shock condition has been examined. Results reveal that the two cell lines show differential response of the HMG proteins 1 & 2 and 14 & 17 to heat shock. Neither T1 nor L 929 cells show significant differences in response to heat shock with respect to the binding affinities of HMG proteins 1 & 2 or 14 & 17 to DNA, as revealed by DNase I sensitivity and chromatin reconstitution assays. Furthermore, the HMG proteins of both the non-heat shocked and the heat shocked T1 and L 929 cells can recover their chromatin activity following reconstitution. These findings suggest that although the HMG proteins might undergo some change in response to heat shock, their inherent potential of reassociation with DNA is still retained.  相似文献   

15.
16.
Chromatin fractions from rat liver nuclei digested by nucleases were separated by differential solubility into several fractions. Material solubilized during digestion (predominantly monomer nucleosomes and polynucleosomes) had the highest HMG14 + 17/DNA ratios but were not enriched in active gene sequences (albumin and c-Ha-ras1 genes). Material soluble in a low ionic strength buffer containing 0.2 mM MgCl2 (monomer nucleosomes and polynucleosomes) contained in addition to the histones, HMG14 and 17 plus a 41K non-histone protein. This fraction was depleted in active gene sequences and enriched in inactive sequences. The insoluble material was highly enriched in active sequences and had the lowest HMG14 + 17/DNA ratio. This fraction could be further fractionated into a histone-containing 2 M NaCl-soluble fraction and a 2 M NaCl-insoluble matrix-bound fraction, both of which were enriched in active sequences. The results show that the HMG proteins do not partition with active sequences during fractionation of chromatin. The 41K protein may be associated with inactive chromatin fraction.  相似文献   

17.
Summary In the present study the effect of histones H1o and H5, and the nonhistone chromatin proteins HMG 1, 2, 14 and 17 (the high mobility group proteins), as well as the acidic peptide fragments of HMG 1 and 2 and polyglutamate, on cell division and differentation of cultured murine erythroleukemia (Friend) cells has been investigated. It was found that histones H1o and H5, the acidic peptide fragments of HMG 1 and 2, HMG 14 and 17 and sodium polyglutamate stimulated cell division at a concentration of 10 g/ml. None of the H1o, H5 or HMG protein preparations induced hemoglobin synthesis, as judged by benzidine staining.  相似文献   

18.
Acceptor proteins for (ADP-ribose)n in the HeLa S3 cell cycle   总被引:3,自引:0,他引:3  
The acceptor proteins for (ADP-ribose)n were investigated by using nuclei or chromosomes isolated from specific phases of the cell cycle of HeLa S3 cells. Analysis of HMG proteins and histone H1 by acetic acid/urea polyacrylamide gel electrophoresis demonstrated that the (ADP-ribosyl)n-ation of HMG 14 and 17 and histone H1 increased by 12- and 5-fold, respectively, in the metaphase chromosomes as compared with that in the G1 phase cell nuclei. The degree of (ADP-ribosyl)n-ation of these proteins in the S phase cell nuclei was as low as that in G1 phase cell nuclei. In the G2 phase cell nuclei, the degrees of (ADP-ribosyl)n-ation of HMG 14 and 17 and histone H1 were about 5- and 2-fold greater, respectively, as compared with that in the G1 phase cell nuclei. The (ADP-ribosyl)n-ation of HMG 1 and 2 was constant through the cell cycle except for a slight decrease in the S phase. The data may imply that the (ADP-ribosyl)n-ation of HMG 14 and 17 and histone H1 is linked to chromatin structural changes in mitosis.  相似文献   

19.
The interaction between calf thymus HMG14 and rat liver chromatin components has been studied via reconstitution and chemical cross-linking. Selective labeling of HMG14 with photoactivable reversible heterobifunctional reagents has allowed a clear identification of the histones interacting with it (histones H2A, H2B and H1). These results are not dependent on whether the chromatin samples used were bulk chromatin, mononucleosomes, or core particles (for H2A and H2B). In addition to histone proteins, DNA also seems to be involved in HMG14 attachment to nucleosome.  相似文献   

20.
The four major high mobility group proteins HMG 1, 2, 14 and 17, HMG 19B and histone H1(0) were identified in the ram testis by their extraction and solubility characteristics and by their electrophoretic mobilities. HMG 14 and 17 were isolated by chromatography and amino acid analysis revealed that they were similar to their calf thymus analogues. A protein, named 2R and co-extracted with HMG 14, was also purified and analysed. Electrophoretic analyses of the proteins extracted by 0.75 M perchloric acid (PCA) or by 0.35 M NaCl from round and non-round spermatids, separated by centrifugal elutriation, showed that the four major HMG proteins disappear from nuclei in the oldest round spermatids, at the time the nuclear content of protein 2R and histone H1(0) increases in spermatids. Ubiquitin and HMG 19B were present in the round and elongating spermatids, but not in elongated spermatids which contained only protamine. The relation was considered between several protein changes and genetic inactivation and structural reorganization of the spermatid chromatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号