首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three myo-inositol tetrakisphosphate analogues were synthesised based upon myo-inositol 1,3,4,6-tetrakisphosphate: 2,5-di-O-methyl myo-inositol-1,3,4,6-tetrakisphosphate 19 and its phosphorothioate derivative 22, together with myo-inositol 1,3,4,6 tetrakisphosphorothioate 25. These compounds were prepared by phosphitylating 2,5-di-O-methyl-myo-inositol and 2,5-di-O-benzyl-myo-inositol followed by oxidation with t-butylhydroperoxide or sulfoxidation at room temperature using sulfur in a mixed solvent of DMF and pyridine. Sulfoxidation was complete within 15 min; however, without DMF, the reaction was much slower, and required overnight. When evaluated against Ins(1,4,5)P(3) 5-phosphatase, 3-kinase and for Ca(2+) release at the Ins(1,4,5)P(3) receptor, only weak activity was observed for Ca(2+) release. 22 and 25 are potent 5-phosphatase inhibitors and 25 is a moderate inhibitor of 3-kinase. Thus, we have synthesised potent enzyme inhibitors, which do not mobilise Ca(2+) and devised conditions for quick, clean and inexpensive sulfoxidation of inositol polyphosphite intermediates.  相似文献   

2.
In bovine adrenal microsomes, Ins(1,4,5)P3 binds to a specific high-affinity receptor site (Kd = 11 nM) with low affinity for two other InsP3 isomers, Ins(1,3,4)P3 and Ins(2,4,5)P3. In the same subcellular fractions Ins(1,4,5)P3 was also the most potent stimulus of Ca2+ release of all the inositol phosphates tested. Of the many inositol phosphates recently identified in angiotensin-II-stimulated adrenal glomerulosa and other cells, Ins(1,3,4,5)P4 has been implicated as an additional second messenger that may act in conjunction with Ins(1,4,5)P3 to elicit Ca2+ mobilization. In the present study, an independent action of Ins(1,3,4,5)P4 was observed in bovine adrenal microsomes. Heparin, a sulphated polysaccharide which binds to Ins(1,4,5)P3 receptors in several tissues, inhibited both the binding of radiolabelled Ins(1,4,5)P3 and its Ca2(+)-releasing activity in adrenal microsomes. In contrast, heparin did not inhibit the mobilization of Ca2+ by Ins(1,3,4,5)P4, even at doses that abolished the Ins(1,4,5)P3 response. Such differential inhibition of the Ins(1,4,5)P3- and Ins(1,3,4,5)P4-induced Ca2+ responses by heparin indicates that Ins(1,3,4,5)P4 stimulates the release of Ca2+ from a discrete intracellular store, and exerts this action via a specific receptor site that is distinct from the Ins(1,4,5)P3 receptor.  相似文献   

3.
Transient transfection of Chinese hamster ovary or baby hamster kidney cells expressing the Group I metabotropic glutamate receptor mGlu1alpha with green fluorescent protein-tagged pleckstrin homology domain of phospholipase Cdelta1 allows real-time detection of inositol 1,4,5-trisphosphate. Loading with Fura-2 enables simultaneous measurement of intracellular Ca(2+) within the same cell. Using this technique we have studied the extracellular calcium sensing property of the mGlu1alpha receptor. Quisqualate, in extracellular medium containing 1.3 mm Ca(2+), increased inositol 1,4,5-trisphosphate in all cells. This followed a typical peak and plateau pattern and was paralleled by concurrent increases in intracellular Ca(2+) concentration. Under nominally Ca(2+)-free conditions similar initial peaks in inositol 1,4,5-trisphosphate and Ca(2+) concentration occurred with little change in either agonist potency or efficacy. However, sustained inositol 1,4,5-trisphosphate production was substantially reduced and the plateau in Ca(2+) concentration absent. Depletion of intracellular Ca(2+) stores using thapsigargin abolished quisqualate-induced increases in intracellular Ca(2+) and markedly reduced inositol 1,4,5-trisphosphate production. These data suggest that the mGlu1alpha receptor is not a calcium-sensing receptor because the initial response to agonist is not sensitive to extracellular Ca(2+) concentration. However, prolonged activation of phospholipase C requires extracellular Ca(2+), while the initial burst of activity is highly dependent on Ca(2+) mobilization from intracellular stores.  相似文献   

4.
Ca(2+) within intracellular stores (luminal Ca(2+)) is believed to play a role in regulating Ca(2+) release into the cytosol via the inositol (1,4,5)-trisphosphate (Ins(1,4,5)P(3))-gated Ca(2+) channel (or Ins(1,4,5)P(3) receptor). To investigate this, we incorporated purified Type 1 Ins(1,4,5)P(3) receptor from rat cerebellum into planar lipid bilayers and monitored effects at altered luminal [Ca(2+)] using K(+) as the current carrier. At a high luminal [Ca(2+)] and in the presence of optimal [Ins(1,4,5)P(3)] and cytosolic [Ca(2+)], a short burst of Ins(1,4,5)P(3) receptor channel activity was followed by complete inactivation. Lowering the luminal [Ca(2+)] caused the channel to reactivate indefinitely. At luminal [Ca(2+)], reflecting a partially empty store, channel activity did not inactivate. The addition of cytosolic ATP to a channel inactivated by high luminal [Ca(2+)] caused reactivation. We provide evidence that luminal Ca(2+) is exerting its effects via a direct interaction with the luminal face of the receptor. Activation of the receptor by ATP may act as a device by which cytosolic Ca(2+) overload is prevented when the energy state of the cell is compromised.  相似文献   

5.
Many cells (including angiotensin II target cells) respond to external stimuli with accelerated hydrolysis of phosphatidylinositol 4,5-bisphosphate, generating 1,2-diacylglycerol and inositol 1,4,5-trisphosphate, a rapidly diffusible and potent Ca2+-mobilizing factor. Following its production at the plasma membrane level, inositol 1,4,5-trisphosphate is believed to interact with specific sites in the endoplasmic reticulum and triggers the release of stored Ca2+. Specific receptor sites for inositol 1,4,5-trisphosphate were recently identified in the bovine adrenal cortex (Baukal, A. J., Guillemette, G., Rubin, R., Sp?t, A., and Catt, K. J. (1985) Biochem. Biophys. Res. Commun. 133, 532-538) and have been further characterized in the adrenal cortex and other target tissues. The inositol 1,4,5-trisphosphate-binding sites are saturable and present in low concentration (104 +/- 48 fmol/mg protein) and exhibit high affinity for inositol 1,4,5-trisphosphate (Kd 1.7 +/- 0.6 nM). Their ligand specificity is illustrated by their low affinity for inositol 1,4-bisphosphate (Kd approximately 10(-7) M), inositol 1-phosphate and phytic acid (Kd approximately 10(-4) M), fructose 1,6-bisphosphate and 2,3-bisphosphoglycerate (Kd approximately 10(-3) M), with no detectable affinity for inositol 1-phosphate and myo-inositol. These binding sites are distinct from the degradative enzyme, inositol trisphosphate phosphatase, which has a much lower affinity for inositol trisphosphate (Km = 17 microM). Furthermore, submicromolar concentrations of inositol 1,4,5-trisphosphate evoked a rapid release of Ca2+ from nonmitochondrial ATP-dependent storage sites in the adrenal cortex. Specific and saturable binding sites for inositol 1,4,5-trisphosphate were also observed in the anterior pituitary (Kd = 0.87 +/- 0.31 nM, Bmax = 14.8 +/- 9.0 fmol/mg protein) and in the liver (Kd = 1.66 +/- 0.7 nM, Bmax = 147 +/- 24 fmol/mg protein). These data suggest that the binding sites described in this study are specific receptors through which inositol 1,4,5-trisphosphate mobilizes Ca2+ in target tissues for angiotensin II and other calcium-dependent hormones.  相似文献   

6.
The B cell antigen receptor (BCR) is coupled to the mobilization of Ca(2+) by the protein-tyrosine kinase, Syk. Syk, recruited to the clustered BCR, becomes phosphorylated on three tyrosines (Tyr-317, Tyr-342, and Tyr-346) located within the linker region that separates the C-terminal catalytic domain from the N-terminal tandem Src homology 2 domains. Phosphorylation within the linker region can be either activating or inhibitory to Ca(2+) mobilization depending on the sites that are modified. Syk that is not phosphorylated on linker region tyrosines couples the BCR to Ca(2+) mobilization through a phosphoinositide 3-kinase-dependent pathway. The phosphorylation of Tyr-342 and -346 enhances the phosphorylation and activation of phospholipase C-gamma and the early phase of Ca(2+) mobilization via a phosphoinositide 3-kinase-independent pathway. The phosphorylation of Tyr-317 strongly dampens the Ca(2+) signal. In cells that lack the Src family kinase, Lyn, the phosphorylation of the inhibitory Tyr-317 is suppressed leading to elevated production of inositol 1,4,5-trisphosphate and an amplified Ca(2+) signal. This provides a novel mechanism by which Lyn functions as an inhibitor of BCR-stimulated signaling. Thus, Syk and Lyn combine to determine the pathway through which the BCR is coupled to Ca(2+) mobilization as well as the magnitude and duration of the Ca(2+) flux.  相似文献   

7.
The second tryptic digestion (TD2) of the (Ca2+ + Mg2+)-ATPase results in the decrease of Ca2+ transport due to uncoupling and the alteration of one of the two high affinity sites to a low affinity site. The eight amino acids adjacent to the tryptic digestion site form a torus with two carboxylic side chains of one aspartic and one glutamic acid for the fast twitch skeletal ATPase and two aspartic acids for the slow twitch/cardiac ATPase toward the inside. The eight amino acid peptides were synthesized for both forms of the ATPase and their binding characteristics were studied with luminescent Eu3+ as a Ca2+ analogue. The data indicate that the peptide binds Eu3+ with 1.0 Eu3+/peptide and strips off two water molecules. The peptide region is a candidate for the Ca2+ transport site of the (Ca2+ + Mg2+)-ATPase.  相似文献   

8.
Imperatoxin A is a high affinity activator of ryanodine receptors. The toxin contains a positively charged surface structure similar to that of the A fragment of skeletal dihydropyridine receptors (peptide A), suggesting that the toxin and peptide could bind to a common site on the ryanodine receptor. However, the question of a common binding site has not been resolved, and the concentration dependence of the actions of the toxin has not been fully explored. We characterize two novel high affinity actions of the toxin on the transient gating of cardiac and skeletal channels, in addition to the well documented lower affinity induction of prolonged substates. Transient activity was (a) enhanced with 0.2-10 nm toxin and (b) depressed by >50 nm toxin. The toxin at >/=1 nm enhanced Ca(2+) release from SR in a manner consistent with two independent activation processes. The effects of the toxin on transient activity, as well as the toxin-induced substate, were independent of cytoplasmic Ca(2+) or Mg(2+) concentrations or the presence of adenine nucleotide and were seen in diisothiocyanostilbene-2',2'-disulfonic acid-modified channels. Peptide A activated skeletal and cardiac channels with 100 nm cytoplasmic Ca(2+) and competed with Imperatoxin A in the high affinity enhancement of transient channel activity and Ca(2+) release from SR. In contrast to transient activity, prolonged substate openings induced by the toxin were not altered in the presence of peptide A. The results suggest that Imperatoxin A has three independent actions on ryanodine receptor channels and competes with peptide A for at least one action.  相似文献   

9.
Formyl peptides are potent neutrophil chemoattractants. In humans and rabbits, the formyl peptide receptor (FPR) binds N-formyl-Met-Leu-Phe (fMLF) with high affinity (K(d) approximately 1 nM). The mouse FPR (mFPR) is a low-affinity receptor for fMLF (K(d) approximately 100 nM); therefore, other agonists for this receptor may exist. Using mFPR-transfected rat basophilic leukemia cells, we found that a recently identified synthetic peptide Trp-Lys-Tyr-Met-Val-D-Met (WKYMVm) is a potent agonist for mFPR. WKYMVm induced calcium mobilization with an EC(50) of 1.2-1.5 nM. Optimal chemotaxis was achieved with 1 nM of WKYMVm, but it required 100 nM of fMLF. WKYMVm stimulated rapid and potent phosphorylation of the mitogen-activated protein kinases extracellular signal-related kinases 1 and 2 when used at 50 nM. Pertussis toxin only partially blocked calcium mobilization and production of inositol 1,4,5-trisphosphate in the stimulated mFPR cells, suggesting the possibility that this receptor couples to Galpha proteins other than Gi and Go. Competitive binding and desensitization data suggest that both peptides interact with the same receptor but may use nonoverlapping binding sites because WKYMVm was unable to effectively displace [(3)H]fMLF bound to mFPR. These results provide evidence for the presence of an alternative potent agonist for mFPR, and suggest a potential usage of WKYMVm for probing the ligand-receptor interactions with the murine formyl peptide receptor homologs.  相似文献   

10.
Oh BC  Kim MH  Yun BS  Choi WC  Park SC  Bae SC  Oh TK 《Biochemistry》2006,45(31):9531-9539
Inositol phosphates are recognized as having diverse and critical roles in biological systems. In this report, kinetic studies and TLC analysis indicate that beta-propeller phytase is a special class of inositol phosphatase that preferentially recognizes a bidentate (P-Ca(2+)-P) formed between Ca(2+) and two adjacent phosphate groups of its natural substrate phytate (InsP(6)). The specific recognition of a bidentate chelation enables the enzyme to sequentially hydrolyze one of the phosphate groups in a bidentate of Ca(2+)-InsP(6) to yield a myo-inositol trisphosphate (InsP(3)) and three phosphates as the final products. A comparative analysis of (1)H- and (13)C NMR spectroscopy with the aid of 2D NMR confirms that the chemical structure of the final product is myo-Ins(2,4,6)P(3). The catalytic properties of the enzyme suggest a potential model for how the enzyme specifically recognizes its substrate Ca(2+)-InsP(6) and produces myo-Ins(2,4,6)P(3) from Ca(2+)-InsP(6). These findings potentially provide evidence for a selective Ca(2+)-InsPs chelation between Ca(2+) and two adjacent phosphate groups of inositol phosphates.  相似文献   

11.
Digestion of scallop muscle membrane fractions with trypsin led to release of soluble polypeptides derived from the large cytoplasmic domain of a Na(+)-Ca(2+) exchanger. In the presence of 1 mm Ca(2+), the major product was a peptide of approximately 37 kDa, with an N terminus corresponding to residue 401 of the NCX1 exchanger. In the presence of 10 mm EGTA, approximately 16- and approximately 19-kDa peptides were the major products. Polyclonal rabbit IgG raised against the 37-kDa peptide also bound to the 16- and 19-kDa soluble tryptic peptides and to a 105-110-kDa polypeptide in the undigested membrane preparation. The 16-kDa fragment corresponded to the N-terminal part of the 37-kDa peptide. The conformation of the precursor polypeptide chain in the region of the C terminus of the 16-kDa tryptic peptide was thus altered by the binding of Ca(2+). Phosphorylation of the parent membranes with the catalytic subunit of protein kinase A and [gamma-(32)P]ATP led to incorporation of (32)P into the 16- and 37-kDa soluble fragments. A site may exist within the Ca(2+) regulatory domain of a scallop muscle Na(+)-Ca(2+) exchanger that mediates direct modulation of secondary Ca(2+) regulation by cAMP.  相似文献   

12.
2-O-(2-Aminoethyl)-Ins(1,4,5)P(3), (5), a novel derivative of the Ca(2+)-mobilising second messenger d-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)], was synthesised from myo-inositol. 5 was found to be a potent mobiliser of intracellular Ca(2+), and an Ins(1,4,5)P(3) affinity matrix synthesised from 5 was effective at selectively binding N-terminal fragments of the Ins(1,4,5)P(3) receptor containing the intact Ins(1,4,5)P(3) binding site. The microprotonation scheme for 5 was resolved and the related constants were determined in comparison with Ins(1,4,5)P(3) and another reactive Ins(1,4,5)P(3) analogue 1-O-(2-aminoethyl-1-phospho)-Ins(4,5)P(2), (2a), by potentiometric and NMR titration methods. The (31)P and (1)H NMR titration curves for compound 5 and Ins(1,4,5)P(3) are remarkably close, indicating analogous acid-base properties and intramolecular interactions for the two compounds. The 1-phosphate-modified Ins(1,4,5)P(3) derivative 2a, on the contrary, behaves as a bisphosphorylated rather than a trisphosphorylated inositol. Thus, 5 is a new reactive Ins(1,4,5)P(3) analogue of considerable potential for investigation of the chemical biology of Ins(1,4,5)P(3)-mediated cellular signalling.  相似文献   

13.
The effects of Alzheimer's disease-related amyloidogenic peptides on inositol 1,4,5-trisphosphate receptor-mediated Ca(2+) mobilization were examined in Xenopus laevis oocytes. Intracellular Ca(2+) was monitored by electrophysiological measurement of the endogenous Ca(2+)-activated Cl(-) current. Application of a hyperpolarizing pulse released intracellular Ca(2+) in oocytes primed by pre-injection of a non-metabolizable inositol 1,4,5-trisphosphate analogue. The carboxyl terminus of the amyloid precursor protein inhibited inositol 1,4,5-trisphosphate receptor-mediated intracellular Ca(2+) release in a dose-dependent manner. Equimolar beta-amyloid peptides Abeta(1-40) or Abeta(1-42) had no effect, and whereas a truncated carboxyl terminus lacking the Abeta domain was equipotent to the full-length one, a carboxyl terminus fragment lacking the NPTY sequence was less effective than the full-length fragment. The inhibition induced by the carboxyl terminus was not associated with the block of the Ca(2+)-dependent Cl(-) channel itself or compromised Ca(2+) influx. We conclude that the carboxyl terminus of the amyloid precursor protein inhibits inositol 1,4,5-trisphosphate-sensitive Ca(2+) release and could thus disrupt Ca(2+) homeostasis and that the carboxyl terminus is much more effective than the beta-amyloid fragments used. By perturbing the coupling of inositol 1,4,5-trisphosphate and Ca(2+) release, the carboxyl terminus of the amyloid precursor protein can potentially be involved in inducing the neural toxicity characteristic of Alzheimer's disease.  相似文献   

14.
The pleckstrin homology domain (PH domain) is now well known as a structural module for the binding of inositol compounds. In the present study, polyclonal antibodies against the peptide KVKSSSWRRERFYK, derived from the N-terminal of the PH domain of phospholipase C-delta1 (PLC-delta1), were raised in rabbits. These were then tested for their ability to inhibit the binding of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] to the binding proteins including the receptor molecule. The Fab fragment of the antibodies but not the whole molecule inhibited the binding of Ins(1,4,5)P3 not only to PLC-delta1 but also to the Ins(1,4,5)P3 receptor, indicating that the antibodies raised recognized the binding site for Ins(1,4, 5)P3 in the receptor. Rat basophilic leukemic cells were permeabilized with saponin and assayed for Ins(1,4,5)P3-mediated Ca2+ release. Pretreatment of permeabilized RBL cells with the Fab fragment of the antibodies diminished the release of Ca2+ caused by Ins(1,4,5)P3, and further absorption experiments using a variety of synthetic peptides suggested that the tripeptide KVK is the epitope of the antibodies. Structural information about KVK will help in screening for Ins(1,4,5)P3 antagonists.  相似文献   

15.
Binding Ca2+ to a high affinity site in protein C and 4-carboxyglutamic acid (Gla)-domainless protein C results in a conformational change that is required for activation by the thrombin-thrombomodulin complex, the natural activator of protein C. It has been hypothesized that this high affinity Ca(2+)-binding site is located in the NH2-terminal epidermal growth factor (EGF) homology region of protein C. We have expressed in human 293 cells a deletion mutant of protein C (E2-PD) which lacks the entire Gla region as well as the NH2-terminal EGF homology region of protein C. Ca2+ inhibits activation of E2-PD or Gla-domainless protein C by thrombin with half-maximal inhibition occurring at Ca2+ concentrations of 103 +/- 11 and 70 +/- 7 microM, respectively, but is required for both E2-PD and Gla-domainless protein C activation by the thrombin-thrombomodulin complex with half-maximal acceleration occurring at Ca2+ concentrations of 87 +/- 8 and 89 +/- 8 microM, respectively. Both E2-PD and Gla-domainless protein C exhibit a reversible, Ca(2+)- but not Mg(2+)-dependent decrease (6 +/- 1%) in fluorescence emission intensity with Kd = 38 +/- 3 microM Ca2+. We conclude that the high affinity Ca(2+)-binding site important for the activation of protein C is located outside of the NH2-terminal EGF homology region and that the metal-binding site in the NH2-terminal EGF homology region may not be a high affinity site in intact protein C.  相似文献   

16.
W G Thomas  L Pipolo  H Qian 《FEBS letters》1999,455(3):367-371
To identify regulators of the type 1A angiotensin II receptor (AT1A), we investigated the interaction of cellular proteins with a fusion protein containing the rat AT1A receptor carboxyl-terminus. An approximately 20 kDa cytoplasmic protein interacted with the fusion protein in a Ca2+-dependent manner and was identified as calmodulin. A control peptide with high affinity for Ca2+/calmodulin and a peptide corresponding to a membrane proximal portion of the AT1A receptor carboxyl-terminus with analogy to known calmodulin-binding sequences were synthesised and tested for calmodulin-binding. Using in vitro binding assays combined with gel shift analysis, we demonstrated the formation of complexes between calmodulin and both peptides, which were Ca2+-dependent and of 1:1 stoichiometry. Affinity gels produced from these peptides also purified calmodulin from cell extracts. These results suggest a novel feedback regulation of the AT1A receptor by Ca2+/calmodulin and identify the membrane proximal region of the carboxyl-terminus as a focal point for interactions important for AT1A receptor function.  相似文献   

17.
A phytase (EC 3.1.3.8) with a high affinity for phytic acid was found in Aspergillus niger SK-57 and purified to homogeneity in four steps by using ion-exchange chromatography (two types), gel filtration, and chromatofocusing. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified enzyme gave a single stained band at a molecular mass of approximately 60 kDa. The Michaelis constant of the enzyme for phytic acid (18.7 +/- 4.6 microM) was statistically analyzed. In regard to the orthophosphate released from phytic acid, a significant difference between a low K(m) phytase from A. niger SK-57 and a high K(m) phytase from Aspergillus ficuum was recognized.  相似文献   

18.
D- and L-myo-inositol 1,2,4,5-tetrakisphosphate (Ins(1,2,4,5)P(4)) were investigated for their ability to bind to the D-myo-inositol 1, 4,5-trisphosphate (Ins(1,4,5)P(3)) receptor in a bovine adrenal cortical membrane fraction, to mobilize intracellular Ca(2+) stores in Xenopus oocytes, and to bind to the rat brain Ins(1,4,5)P(3) 3-kinase overexpressed and purified in E. coli. In competitive binding experiments with the Ins(1,4,5)P(3) receptor, D-Ins(1,2,4, 5)P(4) effectively displaced [(3)H]Ins(1,4,5)P(3) in a concentration-dependent manner with a potency comparable to that of D-Ins(1,4,5)P(3), while L-Ins(1,2,4,5)P(4) was approximately 50-fold less effective than D-Ins(1,4,5)P(3) and D-Ins(1,2,4,5)P(4). The DL-Ins(1,2,4,5)P(4) racemate bound to the Ins(1,4,5)P(3) receptor with an apparent intermediate efficiency. Injection of D-Ins(1,2,4, 5)P(4) into oocytes evoked a chloride current dependent on intracellular Ca(2+) mobilization in which the agonists ranked in a similar order of potency as in the Ins(1,4,5)P(3) receptor binding. On the other hand, D-Ins(1,2,4,5)P(4) only inhibited the binding of [(3)H]Ins(1,4,5)P(3) to 3-kinase very weakly with a markedly reduced potency compared to D-Ins(1,4,5)P(3), indicating that D-Ins(1,2,4, 5)P(4) is not an effective competitor in the phosphorylation of [(3)H]-Ins(1,4,5)P(3) by 3-kinase. The results, therefore, clearly indicate that D-Ins(1,2,4,5)P(4) is as effective as D-Ins(1,4,5)P(3) in the binding to the receptor but not 3-kinase, and access of Ins(1, 2,4,5)P(4) over the Ins(1,4,5)P(3) receptor calls for stringent stereospecificity with D-Ins(1,2,4,5)P(4) being the active form in DL-Ins(1,2,4,5)P(4)-mediated Ca(2+) mobilization.  相似文献   

19.
Addition of gonadotropin releasing hormone (GnRH) to pituitary cells prelabeled with [32P]Pi or with myo-[2-3H]inositol, resulted in a rapid decrease in the level of [32P]phosphatidylinositol 4,5-bisphosphate (approximately 10 s), and in [32P]phosphatidylinositol 4-phosphate (approximately 1 min), followed by increased labeling of [32P]phosphatidylinositol and [32P]phosphatidic acid (1 min). GnRH stimulated the appearance of [3H]myo-inositol 1,4,5-trisphosphate (10 s), [3H]myo-inositol 1,4-bisphosphate (15 s), and [3H]myo-inositol 1-phosphate (1 min) in the presence of Li+ (10 mM). Li+ alone stimulated the accumulation of [3H]myo-inositol 1-phosphate and [3H]myo-inositol 1,4-bisphosphate but not [3H]myo-inositol 1,4,5-trisphosphate, but had no effect on luteinizing hormone release. The effect of GnRH on inositol phosphates (Ins-P) production was dose-related (ED50 = 1-5 nM), and was blocked by a potent antagonist [D-pGlu,pClPhe,D-Trp]GnRH. Elevation of cytosolic free Ca2+ levels ([Ca2+]i), by ionomycin and A23187 from intracellular or extracellular Ca2+ pools, respectively, had no significant effect on [3H]Ins-P production. GnRH-induced [3H]Ins-P production was not dependent on extracellular Ca2+ and was noticed also after extracellular or intracellular Ca2+ mobilization by A23187 or ionomycin, respectively. The effect of GnRH on [3H]Ins-P accumulation was not affected by prior treatment of the cells with the tumor promoter phorbol ester 12-O-tetradecanoylphorbol-13-acetate or with islet-activating protein pertussis toxin. These results indicate that GnRH stimulates a rapid phosphodiester hydrolysis of polyphosphoinositides. The stimulatory effect is not mediated via an islet-activating protein-substrate, is not dependent on elevation of [Ca2+]i, neither is it negatively regulated by 12-O-tetradecanoylphorbol-13-acetate which activates Ca2+/phospholipid-dependent protein C kinase. The results are consistent with the hypothesis that GnRH-induced phosphoinositide turnover is responsible for Ca2+ mobilization followed by gonadotropin release.  相似文献   

20.
γ-Glutamyl peptides were identified previously as novel positive allosteric modulators of Ca(2+)(o)-dependent intracellular Ca(2+) mobilization in HEK-293 cells that bind in the calcium-sensing receptor VFT domain. In the current study, we investigated whether γ-glutamyl-tripeptides including γ-Glu-Cys-Gly (glutathione) and its analogs S-methylglutathione and S-propylglutathione, or dipeptides including γ-Glu-Ala and γ-Glu-Cys are positive allosteric modulators of Ca(2+)(o)-dependent Ca(2+)(i) mobilization and PTH secretion from normal human parathyroid cells as well as Ca(2+)(o)-dependent suppression of intracellular cAMP levels in calcium-sensing receptor (CaR)-expressing HEK-293 cells. In addition, we compared the effects of the potent γ-glutamyl peptide S-methylglutathione, and the amino acid L-Phe on HEK-293 cells that stably expressed either the wild-type CaR or the double mutant T145A/S170T, which exhibits selectively impaired responses to L-amino acids. We find that γ-glutamyl peptides are potent positive allosteric modulators of the CaR that promote Ca(2+)(o)-dependent Ca(2+)(i) mobilization, suppress intracellular cAMP levels and inhibit PTH secretion from normal human parathyroid cells. Furthermore, we find that the double mutant T145A/S170T exhibits markedly impaired Ca(2+)(i) mobilization and cAMP suppression responses to S-methylglutathione as well as L-Phe indicating that γ-glutamyl peptides and L-amino acids activate the CaR via a common mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号