首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In vivo optical imaging to enhance the detection of cancer during endoscopy or surgery requires a targeted fluorescent probe with high emission efficiency and high signal-to-background ratio. One strategy to accurately detect cancers is to have the fluorophore internalize within the cancer cells permitting nonbound fluorophores to be washed away or absorbed. The choice of fluorophores for this task must be carefully considered. For depth of penetration, near-infrared probes are ordinarily preferred but suffer from relatively low quantum efficiency. Although green fluorescent protein has been widely used to image tumors on internal organs in mice, green fluorescent probes are better suited for imaging the superficial tissues because of the short penetration distance of green light in tissue and the highly efficient production of signal. While the fluorescence properties of green fluorophores are well-known in vitro, less attention has been paid to their fluorescence once they are internalized within cells. In this study, the emission efficiency after cellular internalization of four common green fluorophores conjugated to avidin (Av-fluorescein, Av-Oregon green, Av-BODIPY-FL, and Av-rhodamine green) were compared after each conjugate was incubated with SHIN3 ovarian cancer cells. Using the lectin binding receptor system, the avidin-fluorophore conjugates were endocytosed, and their fluorescence was evaluated with fluorescence microscopy and flow cytometry. While fluorescein demonstrated the highest signal outside the cell, among the four fluorophores, internalized Av-rhodamine green emitted the most light from SHIN3 ovarian cancer cells both in vitro and in vivo. The internalized Av-rhodamine green complex appeared to localize to the endoplasmic vesicles. Thus, among the four common green fluorescent dyes, rhodamine green is the brightest green fluorescence probe after cellular internalization. This information could have implications for the design of tumor-targeted fluorescent probes that rely on cellular internalization for cancer detection.  相似文献   

2.
Semiconductor quantum dots (QDs) are nanoparticles in which charge carriers are three dimensionally confined or quantum confined. The quantum confinement provides size-tunable absorption bands and emission color to QDs. Also, the photoluminescence (PL) of QDs is exceptionally bright and stable, making them potential candidates for biomedical imaging and therapeutic interventions. Although fluorescence imaging and photodynamic therapy (PDT) of cancer have many advantages over imaging using ionizing radiations and chemo and radiation therapies, advancement of PDT is limited due to the poor availability of photostable and NIR fluorophores and photosensitizing (PS) drugs. With the introduction of biocompatible and NIR QDs, fluorescence imaging and PDT of cancer have received new dimensions and drive. In this review, we summarize the prospects of QDs for imaging and PDT of cancer. Specifically, synthesis of visible and NIR QDs, targeting cancer cells with QDs, in vitro and in vivo cancer imaging, multimodality, preparation of QD-PS conjugates and their energy transfer, photosensitized production of reactive oxygen intermediates (ROI), and the prospects and remaining issues in the advancement of QD probes for imaging and PDT of cancer are summarized.  相似文献   

3.
Patient survival depends on the completeness of resection of peritoneal ovarian cancer metastases (POCM), and therefore, it is important to develop methods to enhance detection. Previous probe designs based on activatable galactosyl human serum albumin (hGSA)-fluorophore pairs, which target lectin receptors expressed on POCM, have used only visible range dyes conjugated to hGSA. However, imaging probes emitting fluorescence in the NIR range are advantageous because NIR photons have deeper in vivo tissue penetration and result in lower background autofluorescence than those emitting in the visible range. A NIR-activatable hGSA fluorophore was synthesized using a bacteriochlorin-based dye, NMP1. NMP1 has two unique absorption peaks, one in the green range and the other in the NIR range, but emits at a NIR peak of 780 nm. NMP1, thus, has two different Stokes shifts that have the potential to allow imaging of POCM both at the peritoneal surface and just below it. hGSA was conjugated with 2 NMP1 molecules to create a self-quenching complex (hGSA-NMP1). The activation ratio of hGSA-NMP1 was measured by the fluorescence intensity before and after exposure to 10% SDS. The activation ratio of hGSA-NMP1 was ~100-fold in vitro. Flow cytometry, fluorescence microscopy, and in vivo spectral fluorescence imaging were carried out to compare hGSA-NMP1 with hGSA-IR800 and hGSA-ICG (two always-on control agents with similar emission to NMP1) in terms of comparative fluorescence signal and the ability to detect POCM in mice models. The sensitivity and specificity of hGSA-NMP1 for POCM implant detection were determined by colocalizing NMP1 emission spectra with red fluorescent protein (RFP) expressed constitutively in SHIN3 tumor implants at different depths below the peritoneal surface. In vitro, SHIN3 cells were easily detectable after 3 h of incubation with hGSA-NMP1. In vivo submillimeter POCM foci were clearly detectable with spectral fluorescence imaging using hGSA-NMP1. Among 555 peritoneal lesions, hGSA-NMP, using NIR and green excitation light, respectively, detect 75% of all lesions and 91% of lesions ~0.8 mm or greater in diameter. Few false positives were encountered. Nodules located at a depth below the small bowel surface were only depicted with hGSA-NMP1. We conclude that hGSA-NMP1 is useful in imaging peritoneal ovarian cancer metastases, located both superficially and deep in the abdominal cavity.  相似文献   

4.
Multiplexing with multispectral imaging: from mice to microscopy   总被引:1,自引:0,他引:1  
Increasing sophistication in the design and application of biological models as well as the advent of novel fluorescent probes have led to new demands on molecular imaging systems to deliver enhanced sensitivity, reliable quantitation, and the ability to resolve multiple simultaneous signals. Sensitivity is limited, especially in the visible spectral range, by the presence of ubiquitous autofluorescence signals (mostly arising from the skin and gut), which need to be separated from those of targeted fluorophores. Fluorescence-based imaging is also affected by absorbing and scattering properties of tissue in both the visible and to a lesser extent the near-infrared (NIR) regions. However, the small size of typical animal models (usually mice) often permits the detection of enough light arising even from relatively deep locations to allow the capture of signals with an acceptable signal-to-noise ratio. Multispectral imaging, through its ability to separate autofluorescence from label fluorescence, can increase sensitivity as much as 300 times compared to conventional approaches, and concomitantly improve quantitative accuracy. In the NIR region, autofluorescence, while still significant, poses less of a problem. However, the task of disentangling signals from multiple fluorophores remains. Multispectral imaging allows the separation of five or more fluorophores, with each signal quantitated and visualized separately. Preclinical small animal imaging is often accompanied by microscopic analysis, both before and after the in vivo phase. This can involve tissue culture manipulations and/or histological examination of fixed or frozen tissue. Due to the same advantages in sensitivity, quantitation, and multiplexing, microscopy-based multispectral techniques form an excellent complement to in vivo imaging.  相似文献   

5.
The polarity of biological mediums controls a host of physiological processes such as digestion, signaling, transportation, metabolism, and excretion. With the recent widespread use of near-infrared (NIR) fluorescent dyes for biological imaging of cells and living organisms, reporting medium polarity with these dyes would provide invaluable functional information in addition to conventional optical imaging parameters. Here, we report a new approach to determine polarities of macro- and microsystems for in vitro and potential in vivo applications using NIR polymethine molecular probes. Unlike the poor solvatochromic response of NIR dyes in solvents with diverse polarity, their fluorescence lifetimes are highly sensitive, increasing by a factor of up to 8 on moving from polar to nonpolar mediums. We also established a correlation between fluorescence lifetime and solvent orientation polarizability and developed a lifetime polarity index for determining the polarity of complex systems, including micelles and albumin binding sites. Because of the importance of medium polarity in molecular, cellular, and biochemical processes and the significance of reduced autofluorescence and deep tissue penetration of light in the NIR region, the findings reported herein represent an important advance toward using NIR molecular probes to measure the polarity of complex biological systems in vitro and in vivo.  相似文献   

6.
Recently near-infrared (NIR) molecular probes have become important reporter molecules for a number of types of in vivo biomedical imaging. A peptide-based NIR fluorescence probe consisting of a NIR fluorescence emitter (Cy5.5), a NIR fluorescence absorber (NIRQ820), and a protease selective peptide sequence was designed to sense protease activity. Using a MMP-7 model, we showed that NIRQ820 efficiently absorbs the emission energy of Cy5.5 resulting in a low initial signal. Upon reacting with its target, MMP-7, the fluorescence signal of the designed probe was increased by 7-fold with a K(cat)/K(m) of 100 000 M(-)(1) s(-)(1). The described synthetic strategy should have wide application for other NIR probe preparations.  相似文献   

7.
Aiming at the design of highly brilliant NIR emissive optical probes, e.g., for in vivo near-infrared fluorescence imaging (NIRF), we studied the absorption and fluorescence properties of the asymmetric cyanines Dy678, Dy681, Dy682, and Dy676 conjugated to the model antibody IgG. The ultimate goal was here to derive general structure-property relationships for suitable NIR fluorescent labels. These Dy dyes that spectrally match Cy5 and Cy5.5, respectively, were chosen to differ in chromophore structure, i.e., in the substitution pattern of the benzopyrylium end group and in the number of sulfonic acid groups. Spectroscopic studies of the free and IgG-bound fluorophores revealed a dependence of the obtained dye-to-protein ratios on dye hydrophilicity and control of the fluorescence quantum yields (Φ(f)) of the IgG conjugates by the interplay of different fluorescence reduction pathways like dye aggregation and fluorescence resonance energy transfer (FRET). Based upon aggregation studies with these dyes, the amount of dye dimers in the IgG conjugates was determined pointing to dye hydrophilicity as major parameter controlling aggregation. To gain further insight into the exact mechanism of dye dimerization at the protein, labeling experiments at different reaction conditions but constant dye-to-protein ratios in the reaction solution were performed. With Dy682 that displays a Φ(f) of 0.20 in PBS and 0.10 for moderate dye-to-protein ratio of 2.5, a low aggregation tendency, and a superior reactivity in IgG labeling, we identified a promising diagnostic tool for the design of NIR fluorescent probes and protein conjugates.  相似文献   

8.
In this paper, we report the use of lead sulfide quantum dot (PbS QD) bioconjugates as near infrared (NIR) contrast agents for targeted molecular imaging with expanded emission wavelengths beyond 1000 nm. The red-shifted emission band, coupled with the small particle size, which will facilitate clearance, both afford PbS QDs unique properties for noninvasive, high resolution in vivo NIR imaging applications. We have performed imaging experiments at the molecular level using surface-modified PbS NIR QDs, together with our lab-built NIR imaging system. This novel instrumentation and fluorescent contrast agent have enabled us to study the relatively unexplored NIR biomedical imaging spectral region of 900-1200 nm. Preliminary experimental results indicate that PbS-QD/antibody bioconjugates are promising candidates for targeted NIR molecular imaging and future in vivo NIR tissue imaging applications.  相似文献   

9.
Meso-to-meso ethyne-bridged tris[(porphinato)zinc(II)] (PZn(3)) near-infrared (NIR) fluorophores (lambda(em)(max) approximately 800 nm) can be rendered sufficiently amphiphilic to enable their facile incorporation into the hydrophobic core of the apo form of low-density lipoprotein (apo-LDL). These NIR fluorophores are notable in that they manifest low energy excited states polarized exclusively along the long axis of the supermolecule, broad spectral coverage of the visible and high energy NIR spectral domains, intense S(0)-->S(1) transition moments, and comparably large S(1)-->S(0) emission dipole strengths. The reconstituted LDL(PZn(3)) proteins can be used to deliver rapidly hundreds of copies of PZn(3) to a given murine B16 melanoma cell via LDL receptor-mediated endocytosis. PZn(3)-based NIRFs and their corresponding LDL(PZn(3)) proteins have been shown to display minimal cytotoxicity. Confocal NIR fluorescence microscopy evinces that B16 cells can be imaged at very low doses (approximately nM) of NIRF. The highly attractive photophysical properties of PZn(3) and closely related chromophores, coupled with their lack of toxicity and compatibility with uptake into apo-LDL and subsequent rapid delivery to B16 cells via LDLr-mediated endocytosis, suggest the potential utility of this platform for NIR optical imaging of cancer cells in vivo.  相似文献   

10.
Optical imaging can advance knowledge of cellular biology and disease at the molecular level in vitro and, more recently, in vivo. In vivo optical imaging has enabled real-time study to track cell movement, cell growth, and even some cell functions. Thus, it can be used in intact animals for disease detection, screening, diagnosis, drug development, and treatment evaluation. This review includes a brief introduction to fluorescence imaging, fluorescent probes, imaging devices, and in vivo applications in animal models. It also describes a quantitative fluorescence detection method with a reconstruction algorithm for determining the location of fluorophores in tissue and addresses future applications of in vivo fluorescence imaging.  相似文献   

11.
We demonstrate that the structure of carbocyanine dyes, which are commonly used to label small peptides for molecular imaging and not the bound peptide, controls the rate of extravasation from blood vessels to tissue. By examining several near-infrared (NIR) carbocyanine fluorophores, we demonstrate a quantitative correlation between the binding of a dye to albumin, a model plasma protein, and the rate of extravasation of the probe into tissue. Binding of the dyes was measured by fluorescence quenching of the tryptophans in albumin and was found to be inversely proportional to the rate of extravasation. The rate of extravasation, determined by kurtosis from longitudinal imaging studies using rodent ear models, provided a basis for quantitative measurements. Structure-activity studies aimed at evaluating a representative library of NIR fluorescent cyanine probes showed that hydrophilic dyes with binding constants several orders of magnitude lower than their hydrophobic counterparts have much faster extravasation rate, establishing a foundation for rational probe design. The correlation provides a guideline for dye selection in optical imaging and a method to verify if a certain dye is optimal for a specific molecular imaging application.  相似文献   

12.
量子点在生物学中的研究进展   总被引:6,自引:1,他引:6  
量子点作为一种新型的荧光标记物近年来已在生物学中获得广泛应用。本文总结了量子点的主要光学特性,其中包括荧光激发和发射光谱特性、量子产额、光漂白特性和荧光寿命等。重点综述了量子点在细胞标记、活体和组织成像、组合标记和光动力学治疗等生物学中的应用及其最新研究进展。同时讨论了量子点在应用中可能存在的细胞毒性等主要问题,最后对量子点在生物学中的应用前景作了展望。  相似文献   

13.
The detection of human malignancies by near-infrared (NIR) fluorescence will require the conjugation of cancer-specific ligands to NIR fluorophores that have optimal photoproperties and pharmacokinetics. IRDye78, a tetra-sulfonated heptamethine indocyanine NIR fluorophore, meets most of the criteria for an in vivo imaging agent, and is available as an N-hydroxysuccinimide ester for conjugation to low-molecular-weight ligands. However, IRDye78 has a high charge-to-mass ratio, complicating purification of conjugates. It also has a potentially labile linkage between fluorophore and ligand. We have developed an ion-pairing purification strategy for IRDye78 that can be performed with a standard C18 column under neutral conditions, thus preserving the stability of fluorophore, ligand, and conjugate. By employing parallel evaporative light scatter and absorbance detectors, all reactants and products are identified, and conjugate purity is maximized. We describe reversible and irreversible conversions of IRDye78 that can occur during sample purification, and describe methods for preserving conjugate stability. Using seven ligands, spanning several classes of small molecules and peptides (neutral, charged, and/or hydrophobic), we illustrate the robustness of these methods, and confirm that IRDye78 conjugates so purified retain bioactivity and permit NIR fluorescence imaging of specific targets.  相似文献   

14.
In order to gain deeper insight into the functions and dynamics of RNA in cells, the development of methods for imaging multiple RNAs simultaneously is of paramount importance. Here, we describe a modular approach to image RNA in living cells using an RNA aptamer that binds to dinitroaniline, an efficient general contact quencher. Dinitroaniline quenches the fluorescence of different fluorophores when directly conjugated to them via ethylene glycol linkers by forming a non-fluorescent intramolecular complex. Since the binding of the RNA aptamer to the quencher destroys the fluorophore-quencher complex, fluorescence increases dramatically upon binding. Using this principle, a series of fluorophores were turned into fluorescent turn-on probes by conjugating them to dinitroaniline. These probes ranged from fluorescein-dinitroaniline (green) to TexasRed-dinitroaniline (red) spanning across the visible spectrum. The dinitroaniline-binding aptamer (DNB) was generated by in vitro selection, and was found to bind all probes, leading to fluorescence increase in vitro and in living cells. When expressed in E. coli, the DNB aptamer could be labelled and visualized with different-coloured fluorophores and therefore it can be used as a genetically encoded tag to image target RNAs. Furthermore, combining contact-quenched fluorogenic probes with orthogonal DNB (the quencher-binding RNA aptamer) and SRB-2 aptamers (a fluorophore-binding RNA aptamer) allowed dual-colour imaging of two different fluorescence-enhancing RNA tags in living cells, opening new avenues for studying RNA co-localization and trafficking.  相似文献   

15.
Optical imaging is emerging as an important tool to visualize tumors. However, there are many potential choices among the available fluorophores. Optical imaging probes that emit in the visible range can image superficial tumors with high quantum yields; however, if deeper imaging is needed then near-infrared (NIR) fluorophores are necessary. Most commercially available NIR fluorophores are cyanine based and are prone to nonspecific binding and relatively limited photostability. Silica-containing rhodamine (SiR) fluorophores represent a new class of NIR fluorophores, which permit photoactivation via H-dimer formation as well as demonstrate improved photostability. This permits higher tumor-to-background ratios (TBRs) to be achieved over longer periods of time. Here, we compared an avidin conjugated with SiR700 (Av-SiR700) to similar compounds based on cyanine dyes (Av-Cy5.5 and Av-Alexa Fluor 680) in a mouse tumor model of ovarian cancer metastasis. We found that the Av-SiR700 probe demonstrated superior quenching, enabling activation after binding-internalization to the target cell. As a result, Av-SiR700 had higher TBRs compared to Av-Cy5.5 and better biostability compared to Av-Alexa Fluor 680.  相似文献   

16.
Labeling of RGD peptides with near-infrared fluorophores yields optical probes for noninvasive imaging of tumors overexpressing ανβ3 integrins. An important prerequisite for optimum detection sensitivity in vivo is strongly absorbing and highly emissive probes with a known fluorescence lifetime. The RGD-Cy5.5 optical probe was derived by coupling Cy5.5 to a cyclic arginine-glycine-aspartic acid-d-phenylalanine-lysine (RGDfK) peptide via an aminohexanoic acid spacer. Spectroscopic properties of the probe were studied in different matrices in comparison to Cy5.5. For in vivo imaging, human glioblastoma cells were subcutaneously implanted into nude mice, and in vivo fluorescence intensity and lifetime were measured. The fluorescence quantum yield and lifetime of Cy5.5 were found to be barely affected on RGD conjugation but dramatically changed in the presence of proteins. By time domain fluorescence imaging, we demonstrated specific binding of RGD-Cy5.5 to glioblastoma xenografts in nude mice. Discrimination of unspecific fluorescence by lifetime-gated analysis further enhanced the detection sensitivity of RGD-Cy5.5-derived signals. We characterized RGD-Cy5.5 as a strongly emissive and stable probe adequate for selective targeting of ανβ3 integrins. The specificity and thus the overall detection sensitivity in vivo were optimized with lifetime gating, based on the previous determination of the probes fluorescence lifetime under application-relevant conditions.  相似文献   

17.
The advent of superresolution microscopy has opened up new research opportunities into dynamic processes at the nanoscale inside living biological specimens. This is particularly true for synapses, which are very small, highly dynamic, and embedded in brain tissue. Stimulated emission depletion (STED) microscopy, a recently developed laser-scanning technique, has been shown to be well suited for imaging living synapses in brain slices using yellow fluorescent protein as a single label. However, it would be highly desirable to be able to image presynaptic boutons and postsynaptic spines, which together form synapses, using two different fluorophores. As STED microscopy uses separate laser beams for fluorescence excitation and quenching, incorporation of multicolor imaging for STED is more difficult than for conventional light microscopy. Although two-color schemes exist for STED microscopy, these approaches have several drawbacks due to their complexity, cost, and incompatibility with common labeling strategies and fluorophores. Therefore, we set out to develop a straightforward method for two-color STED microscopy that permits the use of popular green-yellow fluorescent labels such as green fluorescent protein, yellow fluorescent protein, Alexa Fluor 488, and calcein green. Our new (to our knowledge) method is based on a single-excitation/STED laser-beam pair to simultaneously excite and quench pairs of these fluorophores, whose signals can be separated by spectral detection and linear unmixing. We illustrate the potential of this approach by two-color superresolution time-lapse imaging of axonal boutons and dendritic spines in living organotypic brain slices.  相似文献   

18.
This study aims to develop a novel cross‐sectional imaging of fluorescence in over‐1000 nm near‐infrared (OTN‐NIR), which allows in vivo deep imaging, using computed tomography (CT) system. Cylindrical specimens of composite of OTN‐NIR fluorophore, NaGdF4 co‐doped with Yb3+ and Ho3+ (ex: 980 nm, em: 1150 nm), were embedded in cubic agar (10.5–12 mm) or in the peritoneal cavity of mice and placed on a rotatable stage. When the fluorescence from inside of the samples was serially captured from multiple angles, the images were disrupted by the reflection and refraction of emitted light on the sample‐air interface. Immersing the sample into water filled in a rectangular bath suppressed the disruption at the interface and successfully reconstructed the position and concentration of OTN‐NIR fluorophores on the cross‐sectional images using a CT technique. This is promising as a novel three‐dimensional imaging technique for OTN‐NIR fluorescent image projections of small animals captured from multiple angles.  相似文献   

19.
A variety of proteases are overexpressed or activated during pathogenesis and represent important targets for therapeutic drugs. We have previously shown that optical imaging probes sensitive in the near-infrared fluorescence (NIRF) spectrum can be used for in vivo imaging of enzyme activity. In the current study, we show that these probes can be designed with specificity for specific enzymes, for example, cathepsin D which is known to be overexpressed in many tumors. A NIR cyanine fluorochrome served as the optical reporter and was attached to the amino terminal of an 11 amino acid peptide sequence with specificity for cathepsin D. The peptides were subsequently attached to a synthetic graft copolymer for efficient tumoral delivery. The close spatial proximity of the multiple fluorochromes resulted in quenching of fluorescence in the bound state. A 350-fold signal amplification was observed post cleavage during in vitro testing. Cell culture experiments using a rodent tumor cell line stably transfected with human cathepsin D confirmed enzyme specific activation within cells. This sequence but not a scrambled control sequence showed enzyme specificity in vitro. We conclude that activatable NIRF optical probes can be synthesized to potentially probe for specific enzymes in living organisms.  相似文献   

20.
We present the design, synthesis, and biochemical and spectroscopic characterization of five functional fluorescent conjugates of kabiramide C (KabC), a small molecule biomimetic of gelsolin. The tetramethylrhodamine (TMR), rhodol green (RG), IC5, dapoxyl (DAP), and fluorescein diester (FDE) conjugates of KabC bind specifically to actin at the barbed end in a 1:1 complex. These probes are shown to function in an indistinguishable manner to the unmodified KabC. Various modalities of the fluorescence emission of these KabC probes, including fluorescence anisotropy and fluorescence resonance energy transfer, are used for the development of assays for the rapid determination of G-actin concentration in solution. The TMR-KabC and FDE-KabC probes are cell permeable and provide unique imaging information on the distribution and dynamics of actin filament within living cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号