首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A key step in the Bacillus subtilis spore formation pathway is the engulfment of the forespore by the mother cell, a phagocytosis-like process normally accompanied by the loss of peptidoglycan within the sporulation septum. We have reinvestigated the role of SpoIIB in engulfment by using the fluorescent membrane stain FM 4-64 and deconvolution microscopy. We have found that spoIIB mutant sporangia display a transient engulfment defect in which the forespore pushes through the septum and bulges into the mother cell, similar to the situation in spoIID, spoIIM, and spoIIP mutants. However, unlike the sporangia of those three mutants, spoIIB mutant sporangia are able to complete engulfment; indeed, by time-lapse microscopy, sporangia with prominent bulges were found to complete engulfment. Electron micrographs showed that in spoIIB mutant sporangia the dissolution of septal peptidoglycan is delayed and spatially unregulated and that the engulfing membranes migrate around the remaining septal peptidoglycan. These results demonstrate that mother cell membranes will move around septal peptidoglycan that has not been completely degraded and suggest that SpoIIB facilitates the rapid and spatially regulated dissolution of septal peptidoglycan. In keeping with this proposal, a SpoIIB-myc fusion protein localized to the sporulation septum during its biogenesis, discriminating between the site of active septal biogenesis and the unused potential division site within the same cell.  相似文献   

3.
Bacterial cell division is a fundamental process that requires the coordinated actions of a number of proteins which form a complex macromolecular machine known as the divisome. The membrane‐spanning proteins DivIB and its orthologue FtsQ are crucial divisome components in Gram‐positive and Gram‐negative bacteria respectively. However, the role of almost all of the integral division proteins, including DivIB, still remains largely unknown. Here we show that the extracellular domain of DivIB is able to bind peptidoglycan and have mapped the binding to its β subdomain. Conditional mutational studies show that divIB is essential for Staphylococcus aureus growth, while phenotypic analyses following depletion of DivIB results in a block in the completion, but not initiation, of septum formation. Localisation studies suggest that DivIB only transiently localises to the division site and may mark previous sites of septation. We propose that DivIB is required for a molecular checkpoint during division to ensure the correct assembly of the divisome at midcell and to prevent hydrolytic growth of the cell in the absence of a completed septum.  相似文献   

4.
The cell division gene divIB of Bacillus subtilis is essential for the normal rate of growth and division. The gene product, DivIB, is a membrane-bound protein in which the bulk of the protein (at the C-terminal end) is on the exterior surface of the cell membrane. DivIB is involved in the early stages of septum formation, but its exact role in cell division is unknown. To gain more information about the mode of action of DivIB in septum formation, we determined the location of DivIB within the cell membrane using immunofluorescence. This immunolocalization approach established that DivIB becomes localized to the division site before visible septation and remains localized to this site throughout the division process. Various DivIB immunostaining patterns were observed in immunofluorescence experiments and, together with cell length and nucleoid distance measurements, have allowed us to propose two models to describe DivIB localization during the cell cycle.  相似文献   

5.
During the process of spore formation in Bacillus subtilis, many membrane proteins localize to the polar septum where they participate in morphogenesis and signal transduction. The forespore membrane protein SpoIIQ plays a central role in anchoring several mother-cell membrane proteins in the septal membrane. Here, we report that SpoIIQ is also responsible for anchoring a membrane protein on the forespore side of the sporulation septum. Co-immunoprecipitation experiments reveal that SpoIIQ resides in a complex with the polytopic membrane protein SpoIIE. During the early stages of sporulation, SpoIIE participates in the switch from medial to polar division and co-localizes with FtsZ at the polar septum. We show that after cytokinesis, SpoIIE is released from the septum and transiently localizes to all membranes in the forespore compartment. Upon the initiation of engulfment, it specifically re-localizes to the septal membrane on the forespore side. Importantly, the re-localization of SpoIIE to the engulfing septum requires SpoIIQ. These results indicate that SpoIIQ is required to anchor membrane proteins on both sides of the division septum. Moreover, our data suggest that forespore membrane proteins can localize to the septal membrane by diffusion-and-capture as has been described for membrane proteins in the mother cell. Finally, our results raise the intriguing possibility that SpoIIE has an uncharacterized function at a late stage of sporulation.  相似文献   

6.
Bacillus subtilis penicillin-binding protein PBP1 has been implicated in cell division. We show here that a PBP1 knockout strain is affected in the formation of the asymmetric sporulation septum and that green fluorescent protein-PBP1 localizes to the sporulation septum. Localization of PBP1 to the vegetative septum is dependent on various cell division proteins. This study proves that PBP1 forms part of the B. subtilis cell division machinery.  相似文献   

7.
The Bacillus subtilis spoIIIJ gene, which has been proven to be vegetatively expressed, has also been implicated as a sporulation gene. Recent genome sequencing information in many organisms reveals that spoIIIJ and its paralogous gene, yqjG, are conserved from prokaryotes to humans. A homologue of SpoIIIJ/YqjG, the Escherichia coli YidC is involved in the insertion of membrane proteins into the lipid bilayer. On the basis of this similarity, it was proposed that the two homologues act as translocase for the membrane proteins. We studied the requirements for spoIIIJ and yqjG during vegetative growth and sporulation. In rich media, the growth of spoIIIJ and yqjG single mutants were the same as that of the wild type, whereas spoIIIJ yqjG double inactivation was lethal, indicating that together these B. subtilis translocase homologues play an important role in maintaining the viability of the cell. This result also suggests that SpoIIIJ and YqjG probably control significantly overlapping functions during vegetative growth. spoIIIJ mutations have already been established to block sporulation at stage III. In contrast, disruption of yqjG did not interfere with sporulation. We further show that high level expression of spoIIIJ during vegetative phase is dispensable for spore formation, but the sporulation-specific expression of spoIIIJ is necessary for efficient sporulation even at the basal level. Using green fluorescent protein reporter to monitor SpoIIIJ and YqjG localization, we found that the proteins localize at the cell membrane in vegetative cells and at the polar and engulfment septa in sporulating cells. This localization of SpoIIIJ at the sporulation-specific septa may be important for the role of spoIIIJ during sporulation.  相似文献   

8.
Escherichia coli contains multiple peptidoglycan-specific hydrolases, but their physiological purposes are poorly understood. Several mutants lacking combinations of hydrolases grow as chains of unseparated cells, indicating that these enzymes help cleave the septum to separate daughter cells after cell division. Here, we confirm previous observations that in the absence of two or more amidases, thickened and dark bands, which we term septal peptidoglycan (SP) rings, appear at division sites in isolated sacculi. The formation of SP rings depends on active cell division, and they apparently represent a cell division structure that accumulates because septal synthesis and hydrolysis are uncoupled. Even though septal constriction was incomplete, SP rings exhibited two properties of mature cell poles: they behaved as though composed of inert peptidoglycan, and they attracted the IcsA protein. Despite not being separated by a completed peptidoglycan wall, adjacent cells in these chains were often compartmentalized by the inner membrane, indicating that cytokinesis could occur in the absence of invagination of the entire cell envelope. Finally, deletion of penicillin-binding protein 5 from amidase mutants exacerbated the formation of twisted chains, producing numerous cells having septa with abnormal placements and geometries. The results suggest that the amidases are necessary for continued peptidoglycan synthesis during cell division, that their activities help create a septum having the appropriate geometry, and that they may contribute to the development of inert peptidoglycan.  相似文献   

9.
FtsI, also known as penicillin-binding protein 3, is a transpeptidase required for the synthesis of peptidoglycan in the division septum of the bacterium, Escherichia coli . FtsI has been estimated to be present at about 100 molecules per cell, well below the detection limit of immunoelectron microscopy. Here, we confirm the low abundance of FtsI and use immunofluorescence microscopy, a highly sensitive technique, to show that FtsI is localized to the division site during the later stages of cell growth. FtsI was also sometimes observed at the cell pole; polar localization was not anticipated and its significance is not known. We conclude (i) that immunofluorescence microscopy can be used to localize proteins whose abundance is as low as approximately 100 molecules per cell; and (ii) that spatial and temporal regulation of FtsI activity in septum formation is achieved, at least in part, by timed localization of the protein to the division site.  相似文献   

10.
Site-directed mutagenesis experiments combined with fluorescence microscopy shed light on the role of Escherichia coli FtsW, a membrane protein belonging to the SEDS family that is involved in peptidoglycan assembly during cell elongation, division, and sporulation. This essential cell division protein has 10 transmembrane segments (TMSs). It is a late recruit to the division site and is required for subsequent recruitment of penicillin-binding protein 3 (PBP3) catalyzing peptide cross-linking. The results allow identification of several domains of the protein with distinct functions. The localization of PBP3 to the septum was found to be dependent on the periplasmic loop located between TMSs 9 and 10. The E240-A249 amphiphilic peptide in the periplasmic loop between TMSs 7 and 8 appears to be a key element in the functioning of FtsW in the septal peptidoglycan assembly machineries. The intracellular loop (containing the R166-F178 amphiphilic peptide) between TMSs 4 and 5 and Gly 311 in TMS 8 are important components of the amino acid sequence-folding information.  相似文献   

11.
12.
FtsL is a small bitopic membrane protein required for vegetative cell division and sporulation in Bacillus subtilis. We investigated its localization by fluorescence microscopy using a green fluorescent protein (GFP) fusion. GFP-FtsL was localized at mid-cell in vegetative cells and at the asymmetric septum in sporulating cells. We also show that FtsL forms a ring-like structure at the division site and that it remains localized at mid-cell during the whole septation process. By yeast two-hybrid analysis and non-denaturing polyacrylamide gel electrophoresis (PAGE) with purified proteins, FtsL was found to interact with another membrane-bound division protein, the FtsL-like DivIC protein.  相似文献   

13.
14.
Using immunofluorescence microscopy, we have examined the dependency of localization among three Bacillus subtilis division proteins, FtsZ, DivIB, and DivIC, to the division site. DivIC is required for DivIB localization. However, DivIC localization is dependent on DivIB only at high growth temperatures, at which DivIB is essential for division. FtsZ localization is required for septal recruitment of DivIB and DivIC, but FtsZ can be recruited independently of DivIB. These localization studies suggest a more specific role for DivIB in division, involving interaction with DivIC.  相似文献   

15.
Bacillus subtilis undergoes a highly distinctive division during spore formation. It yields two unequal cells, the mother cell and the prespore, and septum formation is completed before the origin-distal 70% of the chromosome has entered the smaller prespore. The mother cell subsequently engulfs the prespore. Two different probes were used to study the behavior of the terminus (ter) region of the chromosome during spore formation. Only one ter region was observed at the time of sporulation division. A second ter region, indicative of chromosome separation, was not distinguishable until engulfment was nearing completion, when one was in the mother cell and the other in the prespore. Separation of the two ter regions depended on the DNA translocase SpoIIIE. It is concluded that SpoIIIE is required during spore formation for chromosome separation as well as for translocation; SpoIIIE is not required for separation during vegetative growth.  相似文献   

16.
17.
Cell division in most eubacteria is driven by an assembly of about eight conserved division proteins. These proteins form a ring structure that constricts in parallel with the formation of the division septum. Here, we show that one of the division proteins, FtsL, is highly unstable. We also show that the protein is targeted to the ring structure and that targeting occurs in concert with the recruitment of several other membrane-associated division proteins. FtsL stability is further reduced in the absence of DivIB protein (probably homologous to E. coli FtsQ) at high temperature, suggesting that DivIB is involved in the control of FtsL turnover. The reduced stability of FtsL may explain the temperature dependence of divIB mutants, because their phenotype can be suppressed by overexpression of FtsL. The results provide new insights into the roles of the FtsL and DivIB proteins in bacterial cell division.  相似文献   

18.
We have identified the Bacillus subtilis homologue of the essential cell division gene, ftsL , of Escherichia coli . Repression of ftsL in a strain engineered to carry a conditional promoter results in cell filamentation, with a near immediate arrest of cell division. The filaments show no sign of invagination, indicating that division is blocked at an early stage. FtsL is also shown to be required for septation during sporulation, and depletion of FtsL blocks the activation but not the synthesis of the prespore-specific sigma factor, σF. Immunofluorescence microscopy shows that depletion of FtsL has little or no effect on FtsZ ring formation, but the assembly of other division proteins, DivIB and DivIC, at the site of division is prevented. Repression of FtsL also results in a rapid loss of DivIC protein, indicating that DivIC stability is dependent on the presence of FtsL, in turn suggesting that FtsL is intrinsically unstable. The instability of one or more components of the division apparatus may be important for the cyclic assembly/disassembly of the division apparatus.  相似文献   

19.
Entry into sporulation in Bacillus subtilis is characterized by the formation of a polar septum, which asymmetrically divides the developing cell into forespore (the smaller cell) and mother cell compartments, and by migration of replication origin regions to extreme opposite poles of the cell. Here we show that polar septation is closely correlated with movement of replication origins to the extreme poles of the cell. Replication origin regions were visualized by the use of a cassette of tandem copies of lacO that had been inserted in the chromosome near the origin of replication and decorated with green fluorescent protein-LacI. The results showed that extreme polar placement of replication origin regions is not under sporulation control and occurred in stationary phase under conditions under which entry into sporulation was prevented. On the other hand, the formation of a polar septum, which is under sporulation control, was almost invariably associated with the presence of a replication origin region in the forespore. Moreover, cells in which the polar placement of origin regions was perturbed by deletion of the gene (smc) for the structural maintenance of chromosomes (SMC) protein were impaired in polar division. A small proportion ( approximately 1%) of the mutant cells were able to undergo asymmetric division, but the forespore compartment of these exceptional cells was generally observed to contain a replication origin region. Immunofluorescence microscopy experiments indicated that the block in polar division caused by the absence of SMC occurred at or prior to the step of bipolar Z-ring formation by the cell division protein FtsZ. A model is discussed in which polar division is under the dual control of sporulation and an event associated with the placement of a replication origin at the cell pole.  相似文献   

20.
At the onset of sporulation in Bacillus subtilis, two potential division sites are assembled at each pole, one of which will be used to synthesize the asymmetrically positioned sporulation septum. Using the vital stain FM 4-64 to label the plasma membrane of living cells, we examined the fate of these potential division sites in wild-type cells and found that, immediately after the formation of the sporulation septum, a partial septum was frequently synthesized within the mother cell at the second potential division site. Using time-lapse deconvolution microscopy, we were able to watch these partial septa first appear and then disappear during sporulation. Septal dissolution was dependent on sigma E activity and was partially inhibited in mutants lacking the sigma E-controlled proteins SpoIID, SpoIIM and SpoIIP, which may play a role in mediating the degradation of septal peptidoglycan. Our results support a model in which sigma E inhibits division at the second potential division site by two distinct mechanisms: inhibition of septal biogenesis and the degradation of partial septa formed before sigma E activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号