首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Under certain culture conditions, neonatal rat superior cervical ganglion neurons display not only a number of expected adrenergic characteristics but, paradoxically, also certain cholinergic functions such as the development of hexamethonium-sensitive synaptic contacts and accumulation of choline acetyltransferase (ChAc). The purpose of this study was to determine whether the entire population of cultured neurons was aquiring cholinergic capabilities, or whether this phenomenon was restricted to a subpopulation. After 1--6 and 8 wk in culture, neurons were fixed in KMnO4 after incubation in norepinephrine and prepared for electron microscopy analysis of synaptic vesicle content to determine whether vesicles were dense cored or clear. ChAc, acetylcholinesterase (AChE), and DOPA-decarboxylase (DDC) activities were assayed in sister cultures. In the period from 1 to 8 wk in culture, the average ChAc activity per neuron increased 1,100-fold, and the DDC and AChE activities increased 20- and 30-fold, respectively. After 1 wk in culture, 48 of 50 synaptic boutons contained predominantly dense-cored vesicles, but by 8 wk the synaptic vesicle population was predominantly of the clear type. At intermediate times, the vesicle population in many boutons was mixed. The morphology of the synaptic contacts on neuronal surfaces was that characteristic of autonomic systems, with no definite clustering of the vesicles adjacent to the area of contact. Increased vesicle size correlated with increasing age in culture and the presence of a dense core. Considering these data along with available physiological studies, we conclude that these cultures contain one population of neurons that is initially adrenergic. Over time, under conditions of this culture system, this population develops cholinergic mechanisms. That a neuron may, at a given time, express both cholinergic and adrenergic mechanisms is suggested by the approximately equal numbers of clear and dense-cored vesicles in the boutons found at the intermediate times.  相似文献   

2.
Effect of chronic cadmium (Cd) exposure and the influence of diethyldithiocarbamate (DDC) on Cd absorption was studied on the brain of young male Wistar rats. A significant amount of Cd accumulated in cerebral cortices of rats after 4 weeks of Cd (6 mg/kg body wt) exposure (through gastric intubation). The biological activity of calmodulin (CaM) decreased significantly (p less than 0.001) in the cerebral cortices of these animals in comparison to the control group. 3'-5' Phosphodiesterase and synaptic membrane Ca(2+)-Mg(2+) ATPase were also significantly affected (p less than 0.01 and p less than 0.001 respectively). However, Cd treatment did not alter synaptic membrane adenylate cyclase activity and DDC (9.2 mg/kg body wt, intraperitoneal) treatment along with Cd (6 mg/kg body wt) enhanced Cd accumulation in cerebral cortices of treated animals resulting in an increased inhibition of CaM and CaM dependent enzymes. These data suggest that Cd may be acting via binding to CaM and uncoupling it from its normal cellular control of calcium.  相似文献   

3.
Embryonic development of the mouse superior cervical ganglion (SCG) is defined in vivo and in vitro using morphologic, morphometric, and biochemical approaches. Catecholamine fluorescence was present in the SCG on Day 14 of gestation and underwent characteristic changes in distribution among neurons between this time and adulthood. During prenatal ontogeny, choline acetyltransferase (ChAc) activity increased 2-fold, while tyrosine hydroxylase (T-OH) activity rose 30-fold and total protein increased 4-fold. Ganglionic explants from 14-day embryos extended neurites and exhibited specific biochemical development in medium without added nerve growth factor (NGF). However, the addition of NGF further stimulated neuronal development: Ganglia exhibited significant increases in ChAc and T-OH activities and in total protein compared to controls grown in medium without added NGF. The presence of target submandibular gland radically altered development of T-OH activity in cultured sympathetic ganglia. By 5 days in culture, ganglia grown with target tissue, even in the presence of anti-NGF, exhibited a 10- to 15-fold increase in T-OH activity compared to zero-time controls, and a 2-fold increase over ganglia grown alone or with nontarget tissue. Ganglia grown with target salivary glands showed a correspondingly greater elaboration and directionality of nerve fiber outgrowth, even in the presence of anti-NGF.  相似文献   

4.
Using electrophysiology and fluorescence microscopy with dye FM 1-43, a comparative study of peculiarities of neurotransmitter secretion, synaptic vesicle exo-endocytosis and recycling has been carried out in nerve terminals (NT) of the skin-sternal muscle of the frog Rana ridibunda and of the white mouse diaphragm muscle during a long-term high-frequency stimulation (20 imp/s). The obtained data have allowed identifying three synaptic vesicle pools and two recycling ways in the motor NT. In the frog NT, the long-term high-frequency stimulation induced consecutive expenditure of the pool ready to release, the mobilizational, and reserve vesicle pools. The exocytosis rate exceeded markedly the endocytosis rate; the slow synaptic vesicle recycling with replenishment of the reserve pool was predominant. In the mouse NT, only the vesicles of the ready to release and the mobilizational pools, which are replenished predominantly by fast recycling, were exocytosed. The exo- and endocytosis occurred practically in parallel, while vesicles of the reserve pool did not participate in the neurotransmitter secretion. It is suggested that evolution of the motor NT from the poikilothermal to homoiothermal animals went by the way of a decrease of the vesicle pool size, the more economic expenditure and the more effective reuse of synaptic vesicles owing to the high rates of endocytosis and recycling. These peculiarities can provide in NT of homoiothermal animals a long maintenance of neurotransmitter secretion at the steady and sufficiently high level to preserve reliability of synaptic transmission in the process of the high-frequency activity.  相似文献   

5.
Young adult Louis rats were implanted for chronic sleep recording to test the effect of diethyldithiocarbamate (DDC) on sleep. Recordings of EEG and EMG were done continuously for 12 h during the 12 consecutive days. There were 2 days of baseline recording, 3 days of recording with a single daily injection of placebo, 3 days of recording with a single daily injection of DDC (500 mg/kg i.p.), and 3 days of DDC withdrawal recording with placebo injection. Placebo injections did not change the proportion of time spent in different behavioural states. With daily injection of DDC there was an increase in wakefulness, no change in slow-wave sleep and elimination or drastic reduction in paradoxical sleep (PS). There was no PS rebound during the DDC withdrawal days. These results suggest that the reduction of PS produced by DDC and the absence of PS rebound may be due to a lowering in norepinephrine in the brain. In other experiments rats were injected with DDC (500 mg/kg i.p.) daily for 3 days and whole brains were analysed chemically. Norepinephrine was significantly decreased, while 5-hydroxytryptamine, 5-hydroxyindolacetic acid, dopamine and homovanilic acid were unchanged. Seizure activity appeared during relaxed wakefulness in all rats treated with DDC. Taken together it seems that lowering of brain NE is responsible for the appearance of seizure activity and also, for PS reduction. PS reduction might, per se, produce seizure activity.  相似文献   

6.
Neurotransmitter is released from nerve terminals by Ca2+-dependent exocytosis through many steps. SNARE proteins are key components at the priming and fusion steps, and the priming step is modulated by cAMP-dependent protein kinase (PKA), which causes synaptic plasticity. We show that the SNARE regulatory protein tomosyn is directly phosphorylated by PKA, which reduces its interaction with syntaxin-1 (a component of SNAREs) and enhances the formation of the SNARE complex. Electrophysiological studies using cultured superior cervical ganglion (SCG) neurons revealed that this enhanced formation of the SNARE complex by the PKA-catalyzed phosphorylation of tomosyn increased the fusion-competent readily releasable pool of synaptic vesicles and, thereby, enhanced neurotransmitter release. This mechanism was indeed involved in the facilitation of neurotransmitter release that was induced by a potent biological mediator, the pituitary adenylate cyclase-activating polypeptide, in SCG neurons. We describe the roles and modes of action of PKA and tomosyn in Ca2+-dependent neurotransmitter release.  相似文献   

7.
A highly purified preparation of synaptic vesicles was prepared to study the relationship between calcium-dependent neurotransmitter release and protein phosphorylation. Calcium ions simultaneously produced significant increases in both the endogenous release of norepinephrine from the synaptic vesicles and the endogenous incorporation of [32p] phosphate into specific synaptic vesicle proteins. The results are compatible with the hypothesis that the action of calcium on the phosphorylation of specific synaptic vesicle proteins is the molecular mechanism mediating some of the effects of calcium on neurotransmitter release and synaptic vesicle function.  相似文献   

8.
Continuous neurotransmitter release is subjected to synaptic vesicle availability, which in turn depends on vesicle recycling and the traffic of vesicles between pools. We studied the role of Synaptotagmin-7 (Syt-7) in synaptic vesicle accessibility for release in hippocampal neurons in culture. Synaptic boutons from Syt-7 knockout (KO) mice displayed normal basal secretion with no alteration in the RRP size or the probability of release. However, stronger stimuli revealed an increase in the size of the reserve and resting vesicle pools in Syt-7 KO boutons compared with WT. These data suggest that Syt-7 plays a significant role in the vesicle pool homeostasis and, consequently, in the availability of vesicles for synaptic transmission during strong stimulation, probably, by facilitating advancing synaptic vesicles to the readily releasable pool.  相似文献   

9.
To examine the role of changes in myocardial metabolism in cardiac dysfunction in diabetes mellitus, rats were injected with streptozotocin (65 mg/kg body wt) to induce diabetes and were treated 2 wk later with the carnitine palmitoyltransferase inhibitor (carnitine palmitoyltransferase I) etomoxir (8 mg/kg body wt) for 4 wk. Untreated diabetic rats exhibited a reduction in heart rate, left ventricular systolic pressure, and positive and negative rate of pressure development and an increase in end-diastolic pressure. The sarcolemmal Na+-K+-ATPase activity was depressed and was associated with a decrease in maximal density of binding sites (Bmax) value for high-affinity sites for [3H]ouabain, whereas Bmax for low-affinity sites was unaffected. Treatment of diabetic animals with etomoxir partially reversed the depressed cardiac function with the exception of heart rate. The high serum triglyceride and free fatty acid levels were reduced, whereas the levels of glucose, insulin, and 3,3',-5-triiodo-L-thyronine were not affected by etomoxir in diabetic animals. The activity of Na+-K+-ATPase expressed per gram heart weight, but not per milligram sarcolemmal protein, was increased by etomoxir in diabetic animals. Furthermore, Bmax (per g heart wt) for both low-affinity and high-affinity binding sites in control and diabetic animals was increased by etomoxir treatment. Etomoxir treatment also increased the depressed left ventricular weight of diabetic rats and appeared to increase the density of the sarcolemma and transverse tubular system to normalize Na+-K+-ATPase activity. Therefore, a shift in myocardial substrate utilization may represent an important signal for improving the depressed cardiac function and Na+-K+-ATPase activity in diabetic rat hearts with impaired glucose utilization.  相似文献   

10.
The present study was designed to investigate the effect of in vitro and in vivo lead exposure on calmodulin-mediated neurotransmitter release from synaptic vesicles with a view to explain the mechanism involved in its behavioural effects. It was observed that lead stimulated calmodulin, in terms of its ability to activate cAMP phosphodiesterase, following in vitro and in vivo exposure. Lead was also seen to enhance calmodulin-mediated synaptic vesicle protein phosphorylation. The increase in lead-induced synaptic vesicle protein phosphorylation was accompanied by enhanced release of acetylcholine from synaptic vesicles following in vitro lead exposure by a calmodulin-dependent mechanism. The ability of Ca(2+)/calmodulin to evoke acetylcholine release was reduced in the synaptic vesicles isolated from lead-exposed animals. Concomitantly, the levels of acetylcholine were found to decrease by 37.8% in the lead-treated animals as compared to the controls. The neurochemical alterations following lead exposure were accompanied by neurobehavioural deficits in terms of impaired motor and cognitive functions. The results from the present study clearly suggest that lead exerts its neurotoxic effects by interfering with Ca(2+)/calmodulin-mediated neurotransmitter release that is eventually responsible for behavioural impairment.  相似文献   

11.
Exchange of proteins at sorting endosomes is not only critical to numerous signaling pathways but also to receptor-mediated signaling and to pathogen entry into cells; however, how this process is regulated in synaptic vesicle cycling remains unexplored. In this work, we present evidence that loss of function of a single neuronally expressed GTPase activating protein (GAP), Skywalker (Sky) facilitates endosomal trafficking of synaptic vesicles at Drosophila neuromuscular junction boutons, chiefly by controlling Rab35 GTPase activity. Analyses of genetic interactions with the ESCRT machinery as well as chimeric ubiquitinated synaptic vesicle proteins indicate that endosomal trafficking facilitates the replacement of dysfunctional synaptic vesicle components. Consequently, sky mutants harbor a larger readily releasable pool of synaptic vesicles and show a dramatic increase in basal neurotransmitter release. Thus, the trafficking of vesicles via endosomes uncovered using sky mutants provides an elegant mechanism by which neurons may regulate synaptic vesicle rejuvenation and neurotransmitter release.  相似文献   

12.
Endogenous synaptic vesicle alpha- and beta-tubulin were shown to be the major substrates for a Ca2+-calmodulin-regulated protein kinase system in enriched synaptic vesicle preparations from rat cortex as determined by two-dimensional gel electrophoresis and peptide mapping. The activation of this endogenous tubulin kinase system was dependent on Ca2+ and the Ca2+ binding protein, calmodulin. Under maximally stimulated conditions, approximately 40% of the tubulin present in enriched synaptic vesicles was phosphorylated within less than 50 s by the vesicle Ca2+-calmodulin kinase. Evidence is presented indicating that the Ca2+-calmodulin tubulin kinase is an enzyme system distinct from previously described cyclic AMP protein kinases. alpha-Tubulin and beta-tubulin were identified as major components of previously designated vesicle phosphorylation bands DPH-L and DPH-M. The Ca2+-calmodulin tubulin kinase is very labile and specialized isolation procedures were necessary to retain activity. Ca2+-activated synaptic vesicle tubulin phosphorylation correlated with vesicle neurotransmitter release. Depolarization-dependent Ca2+ uptake in intact synaptosomes simultaneously stimulated the release of neurotransmitters and the phosphorylation of synaptic vesicle alpha- and beta-tubulin. The results indicate that regulation of the synaptic vesicle tubulin kinase by Ca2+ and calmodulin may play a role in the functional utilization of synaptic vesicle tubulin and may mediate some of the effects of Ca2+ on vesicle function and neurosecretion.  相似文献   

13.
Phosphorylation of brain synaptic and coated vesicle proteins was stimulated by Ca2+ and calmodulin. As determined by 5-15% sodium dodecylsulfate (SDS) polyacrylamide gel electrophoresis (PAGE), molecular weights (Mr) of the major phosphorylated proteins were 55,000 and 53,000 in synaptic vesicles and 175,000 and 55,000 in coated vesicles. In synaptic vesicles, phosphorylation was inhibited by affinity-purified antibodies raised against a 30,000 Mr protein doublet endogenous to synaptic and coated vesicles. When this doublet, along with clathrin, was extracted from coated vesicles, phosphorylation did not take place, implying that the protein doublet may be closely associated with Ca2+/calmodulin-dependent protein kinase. Affinity-purified antibodies, raised against clathrin used as a control antibody, failed to inhibit Ca2+/calmodulin-dependent phosphorylation in either synaptic or coated vesicles. Immunoelectron cytochemistry revealed that this protein doublet was present in axon terminal synaptic and coated vesicles. Synaptic vesicles also displayed cAMP-dependent kinase activity; coated vesicles did not. The molecular weights of phosphorylated synaptic vesicle proteins in the presence of Mg2+ and cAMP were: 175,000, 100,000, 80,000, 57,000, 55,000, 53,000, 40,000, and 30,000. Based on the different phosphorylation patterns observed in synaptic and coated vesicles, we propose that brain vesicle protein kinase activities may be involved in the regulation of exocytosis and in retrieval of synaptic membrane in presynaptic axon terminals.  相似文献   

14.
H Stadler  S Tsukita 《The EMBO journal》1984,3(13):3333-3337
Synaptic vesicles from guinea pig brain were highly purified by chromatography on Sephacryl S 1000. They were associated with a Mg-ATPase which could be solubilized with dichloromethane from vesicle membranes, and which elutes upon gel filtration with a mol. wt. approximately 300 kd. Vesicles accumulate [14C]methylamine in the presence of external ATP, indicating an ATP-dependent proton pump. Electron microscopy using a quick freeze, deep etch, rotary shadowing technique showed characteristic 'knob-like' protrusions on the surface of the vesicle. We suggest that these protrusions represent part of a proton ATPase which may be necessary for packaging of neurotransmitter into synaptic vesicles.  相似文献   

15.
The postnatal development of LTP in CA1 area of hippocampus was studied in hippocampal slices from 13-20-day-old intact rats, after unilateral resection of n. medianus on the 13th day, and sham-operated animals. In slices from the intact rats prepared on the 15th-16th-day of postnatal development, the LTP magnitude and duration were significantly larger than in adult animals. Partial deafferentation eliminated this overshoot. However, a less pronounced increase in synaptic plasticity was observed in operated animals on the 17th day. The LTP suppression in the experimental animals may be explained by a decrease in the NMDA receptor activity due to enhanced synaptic activity in the hippocampus. We think that the limited sensory inflow from the partially deafferented forelimb to the hippocampus via the entorhinal cortex may be compensated by activation of other inputs from specific or/and nonspecific pathways. In contrast, the LTP magnitude and duration were significantly increased in slices from the sham-operated rats. This increase may be explained by a decline of synaptic activation of the hippocampus under anesthesia.  相似文献   

16.
Synapsins, a family of neuron-specific phosphoproteins that play an important role in the regulation of synaptic vesicle trafficking and neurotransmitter release, were recently demonstrated to interact with the synaptic vesicle-associated small G protein Rab3A within nerve terminals (Giovedi, S., Vaccaro, P., Valtorta, F., Darchen, F., Greengard, P., Cesareni, G., and Benfenati, F. (2004) J. Biol. Chem. 279, 43760-43768). We have analyzed the functional consequences of this interaction on the biological activities of both proteins and on their subcellular distribution within nerve terminals. The presence of synapsin I stimulated GTP binding and GTPase activity of both purified and endogenous synaptic vesicle-associated Rab3A. Conversely, Rab3A inhibited synapsin I binding to F-actin, as well as synapsin-induced actin bundling and vesicle clustering. Moreover, the amount of Rab3A associated with synaptic vesicles was decreased in synapsin knockout mice, and the presence of synapsin I prevented RabGDI-induced Rab3A dissociation from synaptic vesicles. The results indicate that an interaction between synapsin I and Rab3A exists on synaptic vesicles that modulates the functional properties of both proteins. Given the well recognized importance of both synapsins and Rab3A in synaptic vesicles exocytosis, this interaction is likely to play a major role in the modulation of neurotransmitter release.  相似文献   

17.
Synaptic plasticity results from changes in the strength of synaptic transmission upon repetitive stimulation. The amount of neurotransmitter released from presynaptic terminals can regulate short-term plasticity that lasts for a few minutes. This review focuses on short-term plasticity of small synaptic vesicle (SSV) and large dense-core vesicle (LDCV) exocytosis. Whereas SSVs contain classical neurotransmitters and activate ion channels, LDCVs contain neuropeptides and hormones which primarily activate G protein-coupled receptors (GPCRs). Thus, LDCV exocytosis is mainly associated with modulation of synaptic activity and cannot induce synaptic activity by itself. As in SSV exocytosis, repetitive stimulation leads to short-term enhancement of LDCV exocytosis: i.e., activity-dependent potentiation (ADP) which represents potentiation of neurotransmitter release. Short-term plasticity of SSV exocytosis results from Ca2+ accumulation, but ADP of LDCV exocytosis does not. Here, we review the signaling mechanisms and differences of short-term plasticity in exocytotic processes of SSV and LDCV.  相似文献   

18.
In vitro as well as in animal models, diethyldithiocarbamate (DDC) modifies the tumoricidal activity of some antineoplastic agents. To gain further information about the mechanism of action of DDC, we measured (i) in vitro and (ii) in vivo changes in DNA synthesis of rat thymocytes. (i) In vitro, the scheduled (SDS) and unscheduled (UDS) incorporation of [3H]thymidine ([3H]dT) into DNA of rat thymic cells were biphasically inhibited in a dose range of 1-1000 micrograms DDC/ml. The UV-induced UDS was totally suppressed by 10 and 100 micrograms DDC/ml. (ii) In vivo, 1-4 h following intraperitoneal administration of 250-1000 mg DDC per kg body wt., SDS and UDS were inhibited up to about 80% in a dose-dependent manner. Nucleoid sedimentation, uptake of [3H]dT into the cells, and the pattern of phosphorylation of the intracellular [3H]dT following DDC treatment did not reveal any differences to the controls. A possible effect of DDC treatment on the ribonucleotide reductase and the DNA polymerase alpha is suggested.  相似文献   

19.
Our object was to characterize the morphological changes occurring in pre- and postsynaptic elements during their initial contact and subsequent maturation into typical synaptic profiles. Neurons from superior cervical ganglia (SCG) of perinatal rats were freed of their supporting cells and established as isolated cells in culture. To these were added explants of embryonic rat thoracic spinal cord to allow interaction between outgrowing cord neurites and the isolated autonomic neurons. Time of initial contact was assessed by light microscopy; at timed intervals thereafter, cultures were fixed for electron microscopy. Upon contact, growth cone filopodia became extensively applied to the SCG neuronal plasmalemma and manifested numerous punctate regions in which the apposing plasma membranes were separated by only 7-10 nm. The Golgi apparatus of the target neuron hypertrophied, and its production of coated vesicles increased. Similar vesicles were seen in continuity with the SCG plasmalemma near the close contact site; their apparent contribution of a region of postsynaptic membrane with undercoating was considered to be the first definitive sign of synapse formation. Tracer work with peroxidase and ferritin confirmed that the traffic of coated vesicles within the neuronal soma is largely from Golgi region to somal surface. Subsequent to the appearance of postsynaptic density, the form and content of the growth cone was altered by the loss of filopodia and the appearance of synaptic vesicles which gradually became clustered opposite the postsynaptic density. As the synapse matured, synaptic vesicles increased in number, cleft width and content increased, presynaptic density appeared, branched membranous reticulum became greatly diminished, and most lysosomal structures disappeared. Coated vesicles continued to be associated with the postsynaptic membrane at all stages of maturation. The incorporation of Golgi-derived vesicles into discrete regions of the cell membrane could provide the mechanism for confining specific characteristics of the neuronal membrane to the synaptic region.  相似文献   

20.
神经元突触前可塑性的结构及分子基础   总被引:1,自引:0,他引:1  
突触可塑性是神经元间信息传递的重要生理调控机制,它包括突触前可塑性和突触后可塑性.突触前可塑性是指通过对神经递质释放过程的干预、修饰,调节突触强度的过程.突触强度的变化,是通过影响量子的大小,活动区的个数和囊泡释放概率来实现的.而突触前囊泡活动尤为重要:从转运、搭靠、融合至内吞进入下一轮循环,每一步都是由一群互相作用的蛋白质共同完成的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号