首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel bicyclic mimic of protonated cytosine [1,8-naphthyridin-2,7-(1,8H)-dione, (K)] for Hoogsteen type triplex recognition of guanine has been designed for incorporation into peptide nucleic acids. Bis-PNA clamps with the K base incorporated in the Hoogsteen strand showed a significant stabilization of the triplexes at pH 7 as compared to similar triplexes with PNA oligomers containing either cytosine (6.7 degrees C per unit) or pseudoisocytosine (1.5 degrees C per unit). Cooperative stabilization was observed when the K units were placed in adjacent positions ( approximately 3 degrees C per unit).  相似文献   

2.
The contribution of divalent cations and cytosine protonation to conformation and stability of duplex and triplex formation were intensively investigated and characterized by ultraviolet (UV), circular dichroism (CD), differential scanning calorimetry (DSC), and electrophoresis mobility shift assay (EMSA). CD spectra showed that the divalent cations investigated would not significantly distort nucleotide geometry, while UV and DSC melting experiments revealed that the cation binding abilities to duplexes and triplexes were clearly dependent on the types of cations under near physiological conditions. The calorimetric enthalpies were generally underestimated relative to the corresponding van't Hoff enthalpies for Hoogsteen and Watson-Crick transitions, but free energy changes derived from the DSC measurements were in good agreement with those derived from the UV measurements. The adjacent placing of the C(+) x G.C triplets in triplexes lowered the stabilities of not only Hoogsteen base-pairing but also Watson-Crick base-pairing. The protonation contribution of the given cytosine residues might depend on the local and global structure of the protonated cytosine complex. A rigid structural targeted-strand would favor the protonation of cytosine residues. The apparent pK(a) values for parallel duplex and triplex investigated were determined to be 6.4 and 7.6, respectively, which are considerably heightened by 2.1 and 3.3 pH unit as compared to the intrinsic pK(a) value of the free cytosine residues.  相似文献   

3.
1D and 2D NMR investigations of the 15 residue deoxynucleotide sequence d(TCTCTC-TTT-GAGAGA) show that above pH = 6.5 the molecule adopts a B-form hairpin conformation. As the pH is lowered below 6.5 molecules progressively associate in pairs to form a partially triple helical, partially single stranded structure in which the bases of the oligopyrimidine d(TC)3 tract from one molecule form Hoogsteen pairs with the d(G-A)3 tract of the other. Imino protons of protonated cytosines can be observed at very low field (approximately 15 ppm). The enthalpy of triplex formation was estimated by NMR techniques to be -16 kcal mol-1. Intense H6 to H3' cross peaks from residues in all three strands suggest the presence of N-type sugars at some but not at all possible sites. Surprisingly strong cross peaks between H5' or H5" and non-exchangeable base protons are also observed. These suggest that certain of the O5'-C5'-C4'-C3' phosphate backbone torsion angles (gamma) are unusual.  相似文献   

4.
Near-UV difference spectral analysis of the triplex formed from d(C-T)6 and d(A-G)6.d(C-T)6 in neutral and acidic solution shows that the third strand dC residues are protonated at pH 7.0, far above their intrinsic pKa. Additional support for ion-dipole interactions between the third strand dC residues and the G.C target base pairs comes from reduced positive dependence of triplet stability on ionic strength below 0.9 M Na+, inverse dependence above 0.9 M Na+ and strong positive dependence on hydrogen ion concentration. Molecular modeling (AMBER) of C:G.C and C+:G.C base triplets with the third strand base bound in the Hoogsteen geometry shows that only the C+:G.C triplet is energetically feasible. van't Hoff analysis of the melting of the triplex and target duplex shows that between pH 5.0 and 8.5 in 0.15 M NaCl/0.005 M MgCl2 the enthalpy of melting (delta H degree obs) varies from 5.7 to 6.6 kcal.mol-1 for the duplex in a duplex mixture and from 7.3 to 9.7 kcal.mol-1 for third strand dissociation in the triplex mixture. We have extended the condensation-screening theory of Manning to pH-dependent third strand binding. In this development we explicitly include the H+ contribution to the electrostatic free energy and obtain [formula: see text]. The number of protons released in the dissociation of the third strand from the target duplex at pH 7.0, delta n2, is thereby calculated to be 5.5, in good agreement with approximately six third strand dc residues per mole of triplex. This work shows that when third strand binding requires protonated residues that would otherwise be neutral, triplex formation and dissociation are mediated by proton uptake and release, i.e., a proton switch. As a by-product of this study, we have found that at low pH the Watson-Crick duplex d(A-G)6.d(C-T)6 undergoes a transition to a parallel Hoogsteen duplex d(A-G)6.d(C(+)-T)6.  相似文献   

5.
P Rajagopal  J Feigon 《Biochemistry》1989,28(19):7859-7870
The complexes formed by the homopurine and homopyrimidine deoxyribonucleotides d(GA)4 and d(TC)4 have been investigated by one- and two-dimensional 1H NMR. Under appropriate conditions [low pH, excess d(TC)4 strand] the oligonucleotides form a triplex containing one d(GA)4 and two d(TC)4 strands. The homopurine and one of the homopyrimidine strands are Watson-Crick base paired, and the second homopyrimidine strand is Hoogsteen base paired in the major groove to the d(GA)4 strand. Hoogsteen base pairing in GC base pairs requires hemiprotonation of C; we report direct observation of the C+ imino proton in these base pairs. Both homopyrimidine strands have C3'-endo sugar conformations, but the purine strand does not. The major triplex formed appears to have four TAT and three CGC+ triplets formed by binding of the second d(TC)4 strand parallel to the d(GA)4 strand with a 3' dangling end. In addition to the triplexes formed, at least one other heterocomplex is observed under some conditions.  相似文献   

6.
The crystal structure of a DNA octamer d(GCGTACGC) complexed to an antitumor antibiotic, triostin A, has been solved and refined to 2.2 A resolution by x-ray diffraction analysis. The antibiotic molecule acts as a true bis intercalator surrounding the d(CpG) sequence at either end of the unwound right-handed DNA double helix. As previously observed in the structure of triostin A-d(CGTACG) complex (A.H.-J. Wang, et. al., Science, 225, 1115-1121 (1984)), the alanine amino acid residues of the drug molecule form sequence-specific hydrogen bonds to guanines in the minor groove. The two central A.T base pairs are in Hoogsteen configuration with adenine in the syn conformation. In addition, the two terminal G.C base pairs flanking the quinoxaline rings are also held together by Hoogsteen base pairing. This is the first observation in an oligonucleotide of. Hoogsteen G.C base pairs where the cytosine is protonated. The principal functional components of a bis-intercalative compound are discussed.  相似文献   

7.
Abstract

The crystal structure of a DNA. octamer d(GCGTA.CGC) complexed to an antitumor antibiotic, triostin A, has been solved and refined to 2.2 Å resolution by x-ray diffraction analysis. The antibiotic molecule acts as a true bis intercalator surrouding the d(CpG) sequence at either end of the unwound right-handed DNA. double helix. A.s previously observed in the structure of triostin A.—d(CGTA.CG) complex (A.H.-J. Wang, et. al., Science, 225,1115–1121 (1984)), the alanine amino acid residues of the drug molecule form sequence-specific hydrogen bonds to guanines in the minor groove. The two central A · T base pairs are in Hoogsteen configuration with adenine in the syn conformation. In addition, the two terminal G · C base pairs flanking the quinoxaline rings are also held together by Hoogsteen base pairing. This is the first observation in an oligonucleotide of. Hoogsteen G · C base pairs where the cytosine is protonated. The principal functional components of a bis-intercalative compound are discussed.  相似文献   

8.
B Pan  C Ban  M C Wahl    M Sundaralingam 《Biophysical journal》1997,73(3):1553-1561
The crystal structure of the DNA heptamer d(GCGCGCG) has been solved at 1.65 A resolution by the molecular replacement method and refined to an R-value of 0.184 for 3598 reflections. The heptamer forms a Z-DNA d(CGCGCG)2 with 5'-overhang G residues instead of an A-DNA d(GCGCGC)2 with 3'-overhang G residues. The overhang G residues from parallel strands of two adjacent duplexes form a trans reverse Hoogsteen G x G basepair that stacks on the six Z-DNA basepairs to produce a pseudocontinuous helix. The reverse Hoogsteen G x G basepair is unusual in that the displacement of one G base relative to the other allows them to participate in a bifurcated (G1)N2 . . . N7(G8) and an enhanced (G8)C8-H . . . O6(G1) hydrogen bond, in addition to the two usual hydrogen bonds. The 5'-overhang G residues are anti and C2'-endo while the 3'-terminal G residues are syn and C2'-endo. The conformations of both G residues are different from the syn/C3'-endo for the guanosine in a standard Z-DNA. The two cobalt hexammine ions bind to the phosphate groups in both GpC and CpG steps in Z(I) and Z(II) conformations. The water structure motif is similar to the other Z-DNA structures.  相似文献   

9.
The structure and dynamics of the stem-loop transactivation response element (TAR) RNA from the human immunodeficiency virus type-1 (HIV-1) bound to the ligand argininamide (ARG) has been characterized using a combination of a large number of residual dipolar couplings (RDCs) and trans-hydrogen bond NMR methodology. Binding of ARG to TAR changes the average inter-helical angle between the two stems from approximately 47 degrees in the free state to approximately 11 degrees in the bound state, and leads to the arrest of large amplitude (+/-46 degrees ) inter-helical motions observed previously in the free state. While the global structural dynamics of TAR-ARG is similar to that previously reported for TAR bound to Mg2+, there are substantial differences in the hydrogen bond alignment of bulge and neighboring residues. Based on a novel H5(C5)NN experiment for probing hydrogen-mediated 2hJ(N,N) scalar couplings as well as measured RDCs, the TAR-ARG complex is stabilized by a U38-A27.U23 base-triple involving an A27.U23 reverse Hoogsteen hydrogen bond alignment as well as by a A22-U40 Watson-Crick base-pair at the junction of stem I. These hydrogen bond alignments are not observed in either the free or Mg2+ bound forms of TAR. The combined conformational analysis of TAR under three states reveals that ligands and divalent ions can stabilize similar RNA global conformations through distinct interactions involving different hydrogen bond alignments in the RNA.  相似文献   

10.
Uchida K  Markley JL  Kainosho M 《Biochemistry》2005,44(35):11811-11820
A novel method for monitoring proton-deuteron (H/D) exchange at backbone amides is based on the observation of H/D isotope effects on the (13)C NMR signals from peptide carbonyls. The line shape of the carbonyl (13)C(i) signal is influenced by differential H/D occupancy at the two adjacent amides: the H(N)(i)(+1) (beta site) and the H(N)(i) (gamma site). At a carbon frequency of 75.4 MHz, the H --> D isotope shifts on the (13)C signal are about 5-7 Hz for exchange at the beta site and 2 Hz or less for exchange at the gamma site. Because the effects at the two sites are additive, the time dependence of the line shape of a particular carbonyl resonance can report not only the exchange rates at the individual sites but also the level of dual exchange. Therefore, the data can be analyzed to determine the rate (k(c)) and degree of correlated exchange (X(betagamma)) at the two sites. We have applied this approach to the investigation of the pH dependence of hydrogen exchange at several adjacent residues in Streptomyces subtilisin inhibitor (SSI). Two selectively labeled SSI proteins were produced: one with selective (13)C' labeling at all valyl residues and one with selective (13)C' labeling at all leucyl residues. This permitted the direct observation by one-dimensional (13)C NMR of selected carbonyl signals from residues with slowly exchanging amides at the i and i + 1 positions. The residues investigated were located in an alpha helix and in a five-stranded antiparallel beta sheet. Samples of the two labeled proteins were prepared at various pH values, and (13)C NMR spectra were collected at 50 degrees C prior to and at various times after transferring the sample from H(2)O to (2)H(2)O. Most of the slowly exchanging amides studied were intramolecular hydrogen-bond donors. In agreement with prior studies, the results indicated that the exchange rates of the amide hydrogens in proteins are governed not only by hydrogen bonding but also by other factors. For example, the amide hydrogen of Thr34 exchanges rapidly even though it is an intramolecular hydrogen-bond donor. Over nearly the whole pH range studied, the apparent rates of uncorrelated exchange (k(beta) and k(gamma)) were proportional to [OH(-)] and the apparent rates of correlated exchange at two adjacent sites (k(c)) were roughly proportional to [OH(-)](2). This enabled us to extract the pH-independent exchange rates (k(beta) degrees , k(gamma) degrees , and k(c) degrees ). In all cases in which correlated exchange could be measured, the observed sigmoidal pH dependence of X(betagamma) could be replicated roughly from the derived pH-independent rates.  相似文献   

11.
The crystal structure of r(GCCACCCUG).r(CAGGGUCGGC), helix II of the Xenopus laevis 5S rRNA with a cytosine bulge (underlined), has been determined in two forms at 2.2 A (Form I, space group P4(2)2(1)2, a = b = 57.15 A and c = 43.54 A) and 1.7 A (Form II, space group P4(3)2(1)2, a = b = 32.78 A and c = 102.5 A). The helical regions of the nonamers are found in the standard A-RNA conformations and the two forms have an RMS deviation of 0.75 A. However, the cytosine bulge adopts two significantly different conformations with an RMS deviation of 3.9 A. In Form I, the cytosine bulge forms an intermolecular C+*G.C triple in the major groove of a symmetry-related duplex with intermolecular hydrogen bonds between N4C and O6G, and between protonated N3+C and N7G. In contrast, a minor groove C*G.C triple is formed in Form II with intermolecular hydrogen bonds between O2C and N2G, and between N3C and N3G with a water bridge. A partial major groove opening was observed in Form I structure at the bulge site. Two Ca2+ ions were found in Form I helix whereas there were none in Form II. The structural comparison of these two forms indicates that bulged residues can adopt a variety of conformations with little perturbation to the global helix structure. This suggests that bulged residues could function as flexible latches in bridging double helical motifs and facilitate the folding of large RNA molecules.  相似文献   

12.
13.
S F Singleton  P B Dervan 《Biochemistry》1992,31(45):10995-11003
The energetics of oligodeoxyribonucleotide-directed triple helix formation for the pyrimidine.purine.pyrimidine structural motif were determined over the pH range 5.8-7.6 at 22 degrees C (100 mM Na+ and 1 mM spermine) using quantitative affinity cleavage titration. The equilibrium binding constants for 5'-TTTTTCTCTCTCTCT-3' (1) and 5'-TTTTTm5CTm5CTm5CTm5CTm5CT-3' (2, m5C is 2'-deoxy-5-methylcytidine) increased by 10- and 20-fold, respectively, from pH 7.6 to 5.8, indicating that the corresponding triple-helical complexes are stabilized by 1.4 and 1.7 kcal.mol-1, respectively, at the lower pH. Replacement of the five cytosine residues in 1 with 5-methylcytosine residues to yield 2 affords a stabilization of the triple helix by 0.1-0.4 kcal.mol-1 over the pH range 5.8-7.6. An analysis of these data in terms of a quantitative model for a general pH-dependent equilibrium transition revealed that pyrimidine oligonucleotides with cytidine and 5-methylcytidine form local triple-helical structures with apparent pKa's of 5.5 (C+GC triplets) and 5.7 (m5C+GC triplets), respectively, and that the oligonucleotides should bind to single sites on large DNA with apparent affinity constants of approximately 10(6) M-1 even above neutral pH.  相似文献   

14.
The structure of the complex formed between d(CGTACG)(2) and the antitumor agent 9-amino-[N-(2-dimethylamino)ethyl]acridine-4-carboxamide has been solved to a resolution of 1.6 A using X-ray crystallography. The complex crystallized in space group P6(4) with unit cell dimensions a = b = 30.2 A and c = 39.7 A, alpha = beta = 90 degrees, gamma = 120 degrees. The asymmetric unit contains a single strand of DNA, 1. 5 drug molecules, and 29 water molecules. The final structure has an overall R factor of 19.3%. A drug molecule intercalates between each of the CpG dinucleotide steps with its side chain lying in the major groove, and the protonated dimethylamino group partially occupies positions close to ( approximately 3.0 A) the N7 and O6 atoms of guanine G2. A water molecule forms bridging hydrogen bonds between the 4-carboxamide NH and the phosphate group of the same guanine. Sugar rings adopt the C2'-endo conformation except for cytosine C1 which moves to C3'-endo, thereby preventing steric collision between its C2' methylene group and the intercalated acridine ring. The intercalation cavity is opened by rotations of the main chain torsion angles alpha and gamma at guanines G2 and G6. Intercalation perturbs helix winding throughout the hexanucleotide compared to B-DNA, steps 1 and 2 being unwound by 8 degrees and 12 degrees, respectively, whereas the central TpA step is overwound by 17 degrees. An additional drug molecule, lying with the 2-fold axis in the plane of the acridine ring, is located at the end of each DNA helix, linking it to the next duplex to form a continuously stacked structure. The protonated N,N-dimethylamino group of this "end-stacked" drug hydrogen bonds to the N7 atom of guanine G6. In both drug molecules, the 4-carboxamide group is internally hydrogen bonded to the protonated N-10 atom of the acridine ring. The structure of the intercalated complex enables a rationalization of the known structure-activity relationships for inhibition of topoisomerase II activity, cytotoxicity, and DNA-binding kinetics for 9-aminoacridine-4-carboxamides.  相似文献   

15.
A conformational study of the double-stranded decanucleotide d(GCCG*G*ATCGC).d(GCGATCCGGC), with the G* guanines chelating a cis-Pt(NH3)2 moiety, has been accomplished using 1H and 31P NMR, and molecular mechanics. Correlation of the NMR data with molecular models has disclosed an equilibrium between several kinked conformations and has ruled out an unkinked structure. The deformation is localized at the CG*G*.CCG trinucleotide where the helix is kinked by approximately 60 degrees towards the major groove and unwound by 12-19 degrees. The models revealed an unexpected mobility of the cytosine complementary to the 5'-G*. This cytosine can stack on either branch of the kinked complementary strand. The energy barrier between the two positions has been calculated to be less than or equal to 12 kJ/mol. The NMR data are in support of rapid flip-flopping of this cytosine. An explanation for the strong downfield shift observed in the 31P resonance of the G*pG* phosphate is given.  相似文献   

16.
L-Valyl-L-lysine hydrochloride, C11N3O3H23 HCl, crystallizes in the monoclinic space group P2(1) with a = 5.438(5), b = 14.188(5), c = 9.521(5) A, beta = 95.38(2) degrees and Z = 2. The crystal structure, solved by direct methods, refined to R = 0.036, using full matrix least-squares method. The peptide exists in a zwitterionic form, with the N atom of the lysine side-chain protonated. The two gamma-carbons of the valine side-chain have positional disorder, giving rise to two conformations, chi 1(11) = -67.3 and 65.9 degrees, one of which (65.9 degrees) is sterically less favourable and has been found to be less popular amongst residues branching at beta-C. The lysine side-chain has the geometry of g- tgt, not seen in crystal structures of the dipeptides reported so far. Interestingly, chi 2(3) (63.6 degrees) of lysine side-chain has a gauche+ conformation unlike in most of the other structures, where it is trans. The neighbouring peptide molecules are hydrogen bonded in a head-to-tail fashion, a rather uncommon interaction in lysine peptide structures. The structure shows considerable similarity with that of L-Lys-L-Val HCl in conformational angles and H-bond interactions [4].  相似文献   

17.
The non-exchangeable 1H-NMR signals of the branch core trinucleotide of the lariat branch site (A2'p5'G3'p5'C, 1) and its derivatives 2 and 3 are completely assigned using one- and two-dimensional NMR techniques including NOE, COSY, NOESY, 1H-1H INADEQUATE and 2D-J-resolved spectroscopy. From the vicinal coupling constants in the individual ribose rings, NOE data and T1 measurements, the following properties of the trimers are deduced. (i) The unique stacking behavior of the trimers is S2'N3'N, and the sugar rings exist predominantly in the N-conformation (3'-endo-2'-exo). (ii) The sugar-base orientations appear to be anti. (iii) The branched trimers exist in solution as single-stranded right-handed conformations resembling A-RNA with stacking between the adenine and guanine residues in aqueous solution at 21 degrees C and pH 7.2. (iv) The calculated values for the torsion angles epsilon t and gamma+ for the trimers are 201-203 degrees and 71-86%, respectively, while the percent beta t values are higher for the guanine (87-92%) than the cytosine residues (73-77%). The computer generated depiction of the triribonucleotide 1 is also shown. These subtle structural features may act as recognition signals for this critical lariat branch site which is essential for the second step in yeast mRNA splicing.  相似文献   

18.
The distributions of side-chain conformations in 258 crystal structures of oligopeptides have been analyzed. The sample contains 321 residues having side chains that extend beyond the C beta atom. Statistically observed preferences of side-chain dihedral angles are summarized and correlated with stereochemical and energetic constraints. The distributions are compared with observed distributions in proteins of known X-ray structures and with computed minimum-energy conformations of amino acid derivatives. The distributions are similar in all three sets of data, and they appear to be governed primarily by intraresidue interactions. In side chains with no beta-branching, the most important interactions that determine chi 1 are those between the C gamma H2 group and atoms of the neighboring peptide groups. As a result, the g- conformation (chi 1 congruent to -60 degrees) occurs most frequently for rotation around the C alpha-C beta bond in oligopeptides, followed by the t conformation (chi 1 congruent to 180 degrees), while the g+ conformation (chi 1 congruent to 60 degrees) is least favored. In residues with beta-branching, steric repulsions between the C gamma H2 or C gamma H3 groups and backbone atoms govern the distribution of chi 1. The extended (t) conformation is highly favored for rotation around the C beta-C gamma and C gamma-C delta bonds in unbranched side chains, because the t conformer has a lower energy than the g+ and g- conformers in hydrocarbon chains. This study of the observed side-chain conformations has led to a refinement of one of the energy parameters used in empirical conformational energy computations.  相似文献   

19.
The Biological Magnetic Resonance Data Bank contains NMR chemical shift depositions for 132 RNAs and RNA-containing complexes. We have analyzed the 1H NMR chemical shifts reported for non-exchangeable protons of residues that reside within A-form helical regions of these RNAs. The analysis focused on the central base pair within a stretch of three adjacent base pairs (BP triplets), and included both Watson–Crick (WC; G:C, A:U) and G:U wobble pairs. Chemical shift values were included for all 43 possible WC-BP triplets, as well as 137 additional triplets that contain one or more G:U wobbles. Sequence-dependent chemical shift correlations were identified, including correlations involving terminating base pairs within the triplets and canonical and non-canonical structures adjacent to the BP triplets (i.e. bulges, loops, WC and non-WC BPs), despite the fact that the NMR data were obtained under different conditions of pH, buffer, ionic strength, and temperature. A computer program (RNAShifts) was developed that enables convenient comparison of RNA 1H NMR assignments with database predictions, which should facilitate future signal assignment/validation efforts and enable rapid identification of non-canonical RNA structures and RNA-ligand/protein interaction sites.  相似文献   

20.
C de los Santos  M Rosen  D Patel 《Biochemistry》1989,28(18):7282-7289
High-resolution exchangeable proton two-dimensional NMR spectra have been recorded on 11-mer DNA triple helices containing one oligopurine (R)n and two oligopyrimidine (Y)n strands at acidic pH and elevated temperatures. Our two-dimensional nuclear Overhauser effect studies have focused on an 11-mer triplex where the third oligopyrimidine strand is parallel to the oligopurine strand. The observed distance connectivities establish that the third oligopyrimidine strand resides in the major groove with the triplex stabilized through formation of T.A.T and C.G.C+ base triples. The T.A.T base triple can be monitored by imino protons of the thymidines involved in Watson-Crick (13.65-14.25 ppm) and Hoogsteen (12.9-13.55 ppm) pairing, as well as the amino protons of adenosine (7.4-7.7 ppm). The amino protons of the protonated (8.5-10.0 ppm) and unprotonated (6.5-8.3 ppm) cytidines in the C.G.C+ base triple provide distinct markers as do the imino protons of the guanosine (12.6-13.3 ppm) and the protonated cytidine (14.5-16.0 ppm). The upfield chemical shift of the adenosine H8 protons (7.1-7.3 ppm) establishes that the oligopurine strand adopts an A-helical base stacking conformation in the 11-mer triplex. These results demonstrate that oligonucleotide triple helices can be readily monitored by NMR at the individual base-triple level with distinct markers differentiating between Watson-Crick and Hoogsteen pairing. Excellent exchangeable proton spectra have also been recorded for (R+)n.(Y-)n.(Y+)n 7-mer triple helices with the shorter length permitting spectra to be recorded at ambient temperature.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号