首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In contrast to other organisms, gram-negative bacteria have evolved numerous systems for protein export. Eight types are known that mediate export across or insertion into the cytoplasmic membrane, while eight specifically mediate export across or insertion into the outer membrane. Three of the former secretory pathway (SP) systems, type I SP (ISP, ABC), IIISP (Fla/Path) and IVSP (Conj/Vir), can export proteins across both membranes in a single energy-coupled step. A fourth generalized mechanism for exporting proteins across the two-membrane envelope in two distinct steps (which we here refer to as type II secretory pathways [IISP]) utilizes either the general secretory pathway (GSP or Sec) or the twin-arginine targeting translocase for translocation across the inner membrane, and either the main terminal branch or one of several protein-specific export systems for translocation across the outer membrane. We here survey the various well-characterized protein translocation systems found in living organisms and then focus on the systems present in gram-negative bacteria. Comparisons between these systems suggest specific biogenic, mechanistic and evolutionary similarities as well as major differences.  相似文献   

2.
In contrast to other organisms, gram-negative bacteria have evolved numerous systems for protein export. Eight types are known that mediate export across or insertion into the cytoplasmic membrane, while eight specifically mediate export across or insertion into the outer membrane. Three of the former secretory pathway (SP) systems, type I SP (ISP, ABC), IIISP (Fla/Path) and IVSP (Conj/Vir), can export proteins across both membranes in a single energy-coupled step. A fourth generalized mechanism for exporting proteins across the two-membrane envelope in two distinct steps (which we here refer to as type II secretory pathways [IISP]) utilizes either the general secretory pathway (GSP or Sec) or the twin-arginine targeting translocase for translocation across the inner membrane, and either the main terminal branch or one of several protein-specific export systems for translocation across the outer membrane. We here survey the various well-characterized protein translocation systems found in living organisms and then focus on the systems present in gram-negative bacteria. Comparisons between these systems suggest specific biogenic, mechanistic and evolutionary similarities as well as major differences.  相似文献   

3.
The type II secretion system (main terminal branch of the general secretion pathway) is used by diverse gram-negative bacteria to secrete extracellular proteins. Proteins secreted by this pathway are synthesized with an N-terminal signal peptide which is removed upon translocation across the inner membrane, but the signals which target the mature proteins for secretion across the outer membrane are unknown. The plant pathogens Erwinia chrysanthemi and Erwinia carotovora secrete several isozymes of pectate lyase (Pel) by the out-encoded type II pathway. However, these two bacteria cannot secrete Pels encoded by heterologously expressed pel genes from the other species, suggesting the existence of species-specific secretion signals within these proteins. The functional cluster of E. chrysanthemi out genes carried on cosmid pCPP2006 enables Escherichia coli to secrete E. chrysanthemi, but not E. carotovora, Pels. We exploited the high sequence similarity between E. chrysanthemi PelC and E. carotovora Pel1 to construct 15 hybrid proteins in which different regions of PelC were replaced with homologous sequences from Pel1. The differential secretion of these hybrid proteins by E. coli(pCPP2006) revealed M118 to D175 and V215 to C329 as regions required for species-specific secretion of PelC. We propose that the primary targeting signal is contained within the external loops formed by G274 to C329 but is dependent on residues in M118 to D170 and V215 to G274 for proper positioning.  相似文献   

4.
Secretion of proteins by the general secretory pathway (GSP) is a two-step process requiring the Sec translocase in the inner membrane and a separate substrate-specific secretion apparatus for translocation across the outer membrane. Gram-negative bacteria with pathogenic potential use the GSP to deliver virulence factors into the extracellular environment for interaction with the host. Well-studied examples of virulence determinants using the GSP for secretion include extracellular toxins, pili, curli, autotransporters, and crystaline S-layers. This article reviews our current understanding of the GSP and discusses examples of terminal branches of the GSP which are utilized by factors implicated in bacterial virulence.  相似文献   

5.
K R Hardie  S Lory    A P Pugsley 《The EMBO journal》1996,15(5):978-988
Only one of the characterized components of the main terminal branch of the general secretory pathway (GSP) in Gram-negative bacteria, GspD, is an integral outer membrane protein that could conceivably form a channel to permit protein transport across this membrane. PulD, a member of the GspD protein family required for pullulanase secretion by Klebsiella oxytoca, is shown here to form outer membrane-associated complexes which are not readily dissociated by SDS treatment. The outer membrane association of PulD is absolutely dependent on another component of the GSP, the outer membrane-anchored lipoprotein PulS. Furthermore, the absence of PulS resulted in limited proteolysis of PulD and caused induction of the so-called phage shock response, as measured by increased expression of the pspA gene. We propose that PulS may be the first member of a new family of periplasmic chaperones that are specifically required for the insertion of a group of outer membrane proteins into this membrane. PulS is only the second component of the main terminal branch of the GSP for which a precise function can be proposed.  相似文献   

6.
This statistical study shows that in proteins of gram-negative bacteria exported by the Sec-dependent pathway, the first 14 to 18 residues of the mature sequences have the highest deviation between the observed and expected net charge distributions. Moreover, almost all sequences have either neutral or negative net charge in this region. This rule is restricted to gram-negative bacteria, since neither eukaryotic nor gram-positive bacterial exported proteins have this charge bias. Subsequent experiments performed with a series of Escherichia coli alkaline phosphatase mutants confirmed that this charge bias is associated with protein translocation across the cytoplasmic membrane. Two consecutive basic residues inhibit translocation effectively when placed within the first 14 residues of the mature protein but not when placed in positions 19 and 20. The sensitivity to arginine partially reappeared again 30 residues away from the signal sequence. These data provide new insight into the mechanism of protein export in gram-negative bacteria and lead to practical recommendations for successful secretion of hybrid proteins.  相似文献   

7.
The transport of proteins binding redox cofactors across a biological membrane is complicated by the fact that insertion of the redox cofactor is often a cytoplasmic process. These cytoplasmically assembled redox proteins must thus be transported in partially or completely folded form. The need for a special transport system for redox proteins was first recognized for periplasmic hydrogenases in gram-negative bacteria. These enzymes, which catalyze the reaction H2 <--> 2H+ + 2e, are composed of a large and a small subunit. Only the small subunit has an unusually long signal sequence of 30-50 amino acid residues, characterized by a conserved motif (S/T)-R-R-x-F-L-K at the N-terminus. This sequence directs export of the large and small subunit complex to the periplasm. Sequencing of microbial genes and genomes has shown that signal sequences with this conserved motif, now referred to as twin-arginine leaders, occur ubiquitously and export different classes of redox proteins, containing iron sulfur clusters, molybdopterin cofactors, polynuclear copper sites or flavin adenine dinucleotide. Mutations in an Escherichia coli operon referred to as mtt (membrane targeting and translocation) or tat (twin arginine translocation) are pleiotropic, i.e. these prevent the expression of a variety of periplasmic oxido-reductases in functional form. The Mtt or Tat pathway is distinct from the well-known Sec pathway and occurs ubiquitously in prokaryotes. The fact that its component proteins share sequence homology with proteins of the delta pH pathway for protein transport associated with chloroplast thylakoid assembly, illustrates the universal nature of this novel protein translocation system.  相似文献   

8.
T Dinh  I T Paulsen    M H Saier  Jr 《Journal of bacteriology》1994,176(13):3825-3831
Seventeen fully sequenced and two partially sequenced extracytoplasmic proteins of purple, gram-negative bacteria constitute a homologous family termed the putative membrane fusion protein (MFP) family. Each such protein apparently functions in conjunction with a cytoplasmic membrane transporter of the ATP-binding cassette family, major facilitator superfamily, or heavy metal resistance/nodulation/cell division family to facilitate transport of proteins, peptides, drugs, or carbohydrates across the two membranes of the gram-negative bacterial cell envelope. Evidence suggests that at least some of these transport systems also function in conjunction with a distinct outer membrane protein. We report here that the phylogenies of these proteins correlate with the types of transport systems with which they function as well as with the natures of the substrates transported. Characterization of the MFPs with respect to secondary structure, average hydropathy, and average similarity provides circumstantial evidence as to how they may allow localized fusion of the two gram-negative bacterial cell membranes. The membrane fusion protein of simian virus 5 is shown to exhibit significant sequence similarity to representative bacterial MFPs.  相似文献   

9.
In monoderm (single-membrane) Gram-positive bacteria, the majority of secreted proteins are first translocated across the cytoplasmic membrane into the inner wall zone. For a subset of these proteins, final destination is within the cell envelope as either membrane-anchored or cell wall-anchored proteins, whereas another subset of proteins is destined to be transported across the cell wall into the extracellular milieu. Although the cell wall is a porous structure, there is evidence that, for some proteins, transport is a regulated process. This review aims at describing what is known about the mechanisms that regulate the transport of proteins across the cell wall of monoderm Gram-positive bacteria.  相似文献   

10.
Extracellular secretion of Serratia marcescens nuclease occurs as a two-step process via a periplasmic intermediate. Unlike other extracellular proteins secreted by gram-negative bacteria by the general secretory pathway, nuclease accumulates in the periplasm in its active form for an unusually long time before its export into the growth medium. The energy requirements for extracellular secretion of nuclease from the periplasm were investigated. Our results suggest that the second step of secretion across the outer membrane is dependent upon the external pH; acidic pH effectively but reversibly blocks extracellular secretion. However, electrochemical proton gradient, and possibly ATP hydrolysis, are not required for this step. We suggest that nuclease uses a novel mechanism for the second step of secretion in S. marcescens.  相似文献   

11.
A broad range of extracellular proteins secreted by Pseudomonas aeruginosa use the type II or general secretory pathway (GSP) to reach the medium. This pathway requires the expression of at least 12 xcp gene products. XcpR, a putative nucleotide-binding protein, is essential for the secretion process across the outer membrane even though the protein contains no hydrophobic sequence that could target or anchor it to the bacterial envelope. For a better understanding of the relationship between XcpR and the other Xcp proteins which are located in the envelope, we have studied its subcellular localization. In a wild-type P. aeruginosa strain, XcpR was found associated with the cytoplasmic membrane. This association depends on the presence of the XcpY protein, which also appears to be necessary for XcpR stability. Functional complementation of an xcpY mutant required the XcpY protein to be expressed at a low level. Higher expression precluded the complementing activity of XcpY, although membrane association of XcpR was restored. This behavior suggested that an excess of free XcpY might interfere with the secretion by formation of inactive XcpR-XcpY complexes which cannot properly interact with their natural partners in the secretion machinery. These data show that a precise stoichiometric ratio between several components may be crucial for the functioning of the GSP.  相似文献   

12.
Abstract: The mechanisms by which Gram-negative bacteria like Escherichia coli secrete bacteriocins into the culture medium is unique and quite different from the mechanism by which other proteins are translocated across the two bacterial membranes, namely through the known branches of the general secretory pathway. The release of bacteriocins requires the expression and activity of a so-called bacteriocin release protein and the presence of the detergent-resistant phospholipase A in the outer membrane. The bacteriocin release proteins are highly expressed small lipoproteins which are synthesized with a signal peptide that remains stable and which accumulates in the cytoplasmic membrane after cleavage. The combined action of these stable, accumulated signal peptides, the lipid-modified mature bacteriocin release proteins (BRPs) and phospholipase A cause the release of bacteriocins. The structure and mode of action of these BRPs as well as their application in the release of heterologous proteins by E. coli is described in this review.  相似文献   

13.
Bacteria secrete a wide variety of proteins, many of which play important roles in virulence. In gram-negative bacteria, these proteins must cross the cytoplasmic or inner membrane, periplasm, and outer membrane to reach the cell surface. Gram-negative bacteria have evolved multiple pathways to allow protein secretion across their complex envelope. ATP is not available in the periplasm and many of these secretion pathways encode components that harness energy available at the inner membrane to drive secretion across the outer membrane. In contrast, the autotransporter, two-partner secretion and chaperone/usher pathways are comparatively simple systems that allow secretion across the outer membrane without the need for input of energy from the inner membrane. This review will present overviews of these 'self-sufficient' pathways, focusing on recent advances and secretion mechanisms. Similarities among the pathways and with other protein translocation mechanisms will be highlighted.  相似文献   

14.
The general secretory pathway (GSP) is a two-step process for the secretion of proteins by Gram-negative bacteria. The translocation across the outer membrane is carried out by the type II system, which involves machinery called the secreton. This step is considered to be an extension of the general export pathway, i.e. the export of proteins across the inner membrane by the Sec machinery. Here, we demonstrate that two substrates for the Pseudomonas aeruginosa secreton, both phospholipases, use the twin-arginine translocation (Tat) system, instead of the Sec system, for the first step of translocation across the inner membrane. These results challenge the previous vision of the GSP and suggest for the first time a mosaic model in which both the Sec and the Tat systems feed substrates into the secreton. Moreover, since P.aeruginosa phospholipases are secreted virulence factors, the Tat system appears to be a novel determinant of bacterial virulence.  相似文献   

15.
In bacteria, two major pathways exist to secrete proteins across the cytoplasmic membrane. The general Secretion route, termed Sec-pathway, catalyzes the transmembrane translocation of proteins in their unfolded conformation, whereupon they fold into their native structure at the trans-side of the membrane. The Twin-arginine translocation pathway, termed Tat-pathway, catalyses the translocation of secretory proteins in their folded state. Although the targeting signals that direct secretory proteins to these pathways show a high degree of similarity, the translocation mechanisms and translocases involved are vastly different.  相似文献   

16.
17.
Heat-labile enterotoxin (LT) is an important virulence factor expressed by enterotoxigenic Escherichia coli. The route of LT secretion through the outer membrane and the cellular and extracellular localization of secreted LT were examined. Using a fluorescently labeled receptor, LT was found to be specifically secreted onto the surface of wild type enterotoxigenic Escherichia coli. The main terminal branch of the general secretory pathway (GSP) was necessary and sufficient to localize LT to the bacterial surface in a K-12 strain. LT is a heteromeric toxin, and we determined that its cell surface localization was mediated by the its B subunit independent of an intact G(M1) ganglioside binding site and that LT binds lipopolysaccharide and G(M1) concurrently. The majority of LT secreted into the culture supernatant by the GSP in E. coli associated with vesicles. Only a mutation in hns, not overexpression of the GSP or LT, caused an increase in vesicle yield, supporting a specific vesicle formation machinery regulated by the nucleoid-associated protein HNS. We propose a model in which LT is secreted by the GSP across the outer membrane, secreted LT binds lipopolysaccharide via a G(M1)-independent binding region on its B subunit, and LT on the surface of released outer membrane vesicles interacts with host cell receptors, leading to intoxication. These data explain a novel mechanism of vesicle-mediated receptor-dependent delivery of a bacterial toxin into a host cell.  相似文献   

18.
The now finished genome sequence of Bacillus licheniformis DSM 13 allows the prediction of the genes involved in protein secretion into the extracellular environment as well as the prediction of the proteins which are translocated. From the sequence 296 proteins were predicted to contain an N-terminal signal peptide directing most of them to the Sec system, the main transport system in Gram-positive bacteria. Using 2-DE the extracellular proteome of B. licheniformis grown in different media was studied. From the approximately 200 spots visible on the gels, 89 were identified that either contain an N-terminal signal sequence or are known to be secreted by other mechanisms than the Sec pathway. The extracellular proteome of B. licheniformis includes proteins from different functional classes, like enzymes for the degradation of various macromolecules, proteins involved in cell wall turnover, flagellum- and phage-related proteins and some proteins of yet unknown function. Protein secretion is highest during stationary growth phase. Furthermore, cells grown in complex medium secrete considerably higher protein amounts than cells grown in minimal medium. Limitation of phosphate, carbon and nitrogen sources results in the secretion of specific proteins that may be involved in counteracting the starvation.  相似文献   

19.
Cytoplasmic membrane vesicles isolated from the gram-negative photosynthetic bacterium Rhodobacter capsulatus catalyzed the transport of nucleotides. No transport occurred in the intact bacteria unless they were pretreated with EDTA. The transport rate was measured by incorporation of radioactive phosphate into externally added ADP or by incorporation of nonradioactive phosphate into added labeled ADP. The catalytic activities which utilized the added ADP were photosynthetic ATP synthesis, Pi-ADP exchange, and adenylate kinase. These activities were shown to occur on the cytoplasmic side of the internal membrane. The products were found in the outer medium. The rate of nucleotide transport across the membranes was comparable to the rate of photophosphorylation. These results indicated that nucleotides can be transported across the cytoplasmic membrane but not across the outer membrane of the native R. capsulatus cell. Therefore, by analogy to the mitochondrial ATP-ADP translocator, the exchange might function as an energy transfer system to the periplasm of these bacteria.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号