首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The restriction endonucleases SalI, PstI, KpnI and HindIII have been used to construct a physical map of safflower (Carthamus tinctorius L.) chloroplast DNA. This was accomplished by hybridizing Southern blots of single and double digested chloroplast DNA with 32P-dCTP nick-translated SalI, KpnI and HindIII probes which were individually isolated from agarose gels. The chloroplast DNA was found to be circular and to contain approximately 151 kbp. In common with many other higher plant chloroplast DNAs a sequence of about 25 kbp is repeated in an inverted orientation. The small and large single copy regions separating the two repeated segments contain about 20 kbp and 81 kbp, respectively. The rRNA structural genes were also mapped by Southern blot hybridization and are co-linear with several other plant species.  相似文献   

2.
Summary Nicotiana tabacum chloroplast DNA was digested with several restriction endonucleases chosen for their potential usefulness in distinguishing between species of the genus, Nicotiana. The resulting fragments were ordered into a circular configuration of about 160 kilobase pairs, equalling about 100x106 daltons. The physical map features an inverted, repeated unit of about 24 kilobase pairs separated by a unique sequence region with a mean size of 13 kilobase pairs on the short side. The cistrons coding for chloroplast ribosomal RNA are contained within the inverted repeat and have the arrangement: 16S, spacer, 23S, 4.5S/5S. Restriction endonuclease maps obtained with the enzymes PvuII, XhoI, and BglI are presented.  相似文献   

3.
Summary Chloroplast DNA of Chlamydomonas reinhardi contains many inverted repeated sequences. Analysis by hydroxyapatite binding, S1 nuclease digestion, and electron microscopy indicates that these sequences are 0.1–0.3 kilobase pairs in length, are widely distributed in the chloroplast genome, and make up 4–7% of the chloroplast DNA.Abbreviations RNA ribonucleic acid - rRNA ribosomal RNA - RNA complementary RNA - DNA deoxyribonucleic acid - chl DNA chloroplast DNA - HAP hydroxypatite - SSC 0.15 M NaCl, 0.015 M sodium citrate - 0.1xSSC, 2xSSC, 4.67xSSC 0.1, 2, and 4.67 times the concentration of SSC, respectively - TCA trichloroacetic acid - PB NaPO4 buffer, pH 6.8 - Kb Kilobase - KbP Kilobase pair  相似文献   

4.
P W Gray  R B Hallick 《Biochemistry》1979,18(9):1820-1825
Ribosomal RNA (5S) from Euglena gracilis chloroplasts was isolated by preparative electrophoresis, labeled in vitro with 125I, and hybridized to restriction nuclease fragments from chloroplast DNA or cloned chloroplast DNA segments. Euglena chloroplast 5S rRNA is encoded in the chloroplast genome. The coding region of 5S rRNA has been positioned within the 5.6 kilobase pair (kbp) repeat which also codes for 16S and 23S rRNA. There are three 5S rRNA genes on the 130-kbp genome. The order of RNAs within a single repeat is 16S-23S-5S. The organization and size of the Euglena chloroplast ribosomal repeat is very similar to the ribosomal RNA operons of Escherichia coli.  相似文献   

5.
Summary The unicellular green alga Chlamydomonas moewusii contains small DNA species of unknown cellular location. We report that the most abundant of these DNAs, here designated low-molecular-weight DNA (LMW DNA), is a linear molecule of 5.9 kilobase pairs (kbp). Southern blot hybridization and restriction enzyme analysis revealed that the LMW DNA sequence also exists as an integrated sequence in a discrete region of the chloroplast genome. We have confirmed earlier reports that small DNA species related to the LMW DNA are absent from Chlamydomonas eugametos, an alga which is interfertile with C. moewusii. In the C. eugametos chloroplast genome we found only remnants of the LMW DNA sequence.  相似文献   

6.
Summary The chloroplast DNAs (cpDNAs) of Oenothera berteriana and Oe. odorata (subsection Munzia) were examined by restriction endonuclease analysis with Sal I, Pvu II, Kpn I, Pst I, Hind III, and Bam HI. The fragment patterns show that these cpDNAs have all 133 restriction sites in common as well as a lot of individual bands. Nevertheless the cpDNAs of the two species can be distinguished by distinct differences in size between a small number of fragments. The 42 cleavage sites produced by Sal I, Pvu II and Kpn I were mapped on the circular cpDNAs. This was achieved by an approach which combined experimental and mathematical procedures. The overall serial order of the fragments was found to be the same for both cpDNAs. The size differences of individual fragments in the Sal I, Pvu II and Kpn I patterns between Oe. berteriana and Oe. odorata cpDNA are located within five regions scattered along the plastid chromosome. Two of these regions have been localized in the larger and one in the smaller of the two single-copy parts of the cpDNA molecule. The remaining two overlap the borders between the large single-copy and each of the duplicated parts of the molecule. The positions of distinct restriction sites are altered among the two Oenothera plastome DNAs by 0.02–0.4 MDa (30–600 base pairs). These alterations probably result from insertions/deletions.Abbreviations cpDNA chloroplast, plastid DNA - Oe. Oenothera - MDa Megadalton - rRNA, rDNA ribosomal RNA, DNA Dedicated to Professor Berthold Schwemmle, Tübingen, on the occasion of his 60th birthday  相似文献   

7.
Summary The buoyant density and endonuclease restriction patterns of potato (Solanum tuberosum L.) and tomato (Lycopersicon esculentum) ptDNA were examined and compared with those of their somatic hybrids. The plastids from these plants, both of which belong to the family of Solanaceae, contain a single DNA species whose density of 1.697 gcm-3 and size of approximately 156 kbp are similar to those of ptDNA from other higher plants. The Sal I restriction patterns were indistinguishable; however, those obtained with Kpn I, Pst I, and Eco RI disclosed that each species possesses a unique ptDNA. These observations suggest a relatively recent divergence of both species. Of the twelve hybrid lines screened, eight contained exclusively potato ptDNa and four contained only tomato ptDNA at a 0.1–3% level of detection. Rearrangements of modifications of DNA were not detected. The plastid identities of three hybrid lines that had previously been analyzed by isoelectric focusing of RuBPcase subunits (Melchers et al. 1978) agreed with those determined by restriction endonuclease analysis.Abbreviations used in the text ptDNA plastid DNA, chloroplast DNA - cDNA copy DNA - RuBPcase ribulose bisphosphate carboxylase/oxygenase - LSU large subunit of RuBPcase - kbp kilobase pairs - SDS sodium dodecyl sulfate - SSC standard saline citrate - IEF isoelectric focusing  相似文献   

8.
ABSTRACT. Analysis of total DNA isolated from the Chrysophyte alga Ochromonas danica revealed, in addition to nuclear DNA, two genomes present as numerous copies per cell. The larger genome (?120 kilobase pairs or kbp) is the plastid DNA, which is identified by its hybridization to plasmids containing sequences for the photosynthesis genes rbcL, psbA, and psbC. The smaller genome (40 kbp) is the mitochondrial genome as identified by its hybridization with plasmids containing gene sequences of plant cytochrome oxidase subunits I and II. Both the 120- and 40-kbp genomes contain genes for the small and large subunits of rDNA. The mitochondrial genome is linear with terminal inverted repeats of about 1.6 kbp. Two other morphologically similar species were examined, Ochromonas minuta and Poteriochromonas malhamensis. All three species have linear mitochondrial DNA of 40 kbp. Comparisons of endonuclease restriction-fragment patterns of the mitochondrial and chloroplast DNAs as well as those of their nuclear rDNA repeats failed to reveal any fragment shared by any two of the species. Likewise, no common fragment size was detected by hybridization with plasmids containing heterologous DNA or with total mitochondrial DNA of O. danica; these observations support the taxonomic assignment of these three organisms to different species. The Ochromonas mitochondrial genomes are the first identified in the chlorophyll a/c group of algae. Combining these results with electron microscopic observations of putative mitochondrial genomes reported for other chromophytes and published molecular studies of other algal groups suggests that all classes of eukaryote algae may have mitochondrial genomes < 100 kbp in size, more like other protistans than land plants.  相似文献   

9.
Summary Plastid DNAs of ten different Epilobium species from four continents have been analysed using the restriction endonucleases BamHI, BglI, BglII, EcoRI, PstI, PvuII and SalI. With respect to the position of cleavage sites of those enzymes, each species has a specific plastome. Fragment patterns of different species from the same continent show a higher degree of similarity than those from different continents. Physical maps of the circular plastid DNA molecule have been constructed for each of the ten species by localising the cleavage sites of the enzymes BglI, PvuII and SalI. As in most other higher plants, the plastid DNA of Epilobium is segmentally organized into two inverted repeats separated by a large and a small single copy region. In heterologous hybridization experiments using radioactively labelled gene probes, the positions of structural genes coding for the rRNAs and for seven polypeptides have been determined. In contrast to its closest relative, Oenothera, the gene arrangement of Epilobium plastomes has the same order as in spinach. This indicates that changes in gene arrangement may be genus-specific and not the result of one or several events affecting all members of a plant family.Abbreviations kbp kilobase pairs - ptDNA plastid DNA - rDNA ribosomal DNA - rRNA ribosomal RNA - SDS sodium dodecyl sulfate  相似文献   

10.
Summary Tobacco chloroplast DNA contains a large inverted repeat sequence of 26 kilobase pairs (kbp). The inverted repeat is separated by 20 kbp small single-copy and 90 kbp large single-copy regions. We have cloned four DNA fragments containing each junction between the inverted repeat and the single-copy regions. The sequence analysis revealed the exact edges of the inverted repeat. A putative coding region for a ribosomal protein CS19 was found 4 base pairs (bp) away from the inverted repeat on the left margin of the large single-copy region. A sequence AGGAG, which is complementary to the 3 terminal sequence of tobacco chloroplast 16S rRNA, was found within the inverted repeat. A tRNAHis gene was found 5 bp away from the inverted repeat on the right-hand margin of the large single-copy region.  相似文献   

11.
Digestion of nuclear DNAs of five plants, namelyCucurbita maxima (red gourd),Trichosanthes anguina (snake gourd),Cucumis sativus (cucumber),Cajanus cajan (pigeon pea) andPhaseolus vulgaris (french bean) with the restriction endonucleaseMboI yielded discrete size classes with molecular weights in the range of 0.5 to 5 kbp. TheMboI digestion pattern of Cot 0.1 DNA in french bean is comparable with that of total DNA, indicating that these bands represented highly repeated DNA sequences. Cleavage of the DNAs with varying amounts ofMboI indicated the dispersed nature of the repeat families. Southern hybridization studies using french bean highly repetitive DNA as a probe indicated more homology with repeats of pigeon pea and less homology with red gourd, snake gourd and cucumber repeats.  相似文献   

12.
Clone banks of the mung bean, pea and spinach chloroplast genomes   总被引:7,自引:0,他引:7  
J D Palmer  W F Thompson 《Gene》1981,15(1):21-26
All but one of the PstI restriction fragments from mung bean, pea, and spinach chloroplast DNAs have been stably cloned into pBR322. Large fragments (15-54 kb) were cloned at low efficiencies which decreased with increasing fragment length. However, plasmids containing fragments above 25-30 kb were too unstable to be useful. In particular, pBR322 derivatives containing the largest mung bean and spinach fragments (34 kb and 54 kb, respectively) are extremely unstable and rapidly delete parts of the plasmid sequence. The PstI fragments of mung bean chloroplast DNA which cover the 34-kb PstI fragment have been cloned into pACYC177. After a search of several thousand recombinants we were unable to recover a clone containing a 12.2-kb pea chloroplast PstI fragment and suggest that some property of its sequence may be inimical to the cloning process. The identity of the cloned fragments to native chloroplast DNA restriction fragments is demonstrated by restriction analysis and the ability to construct detailed restriction maps of the mung bean and pea chloroplast genomes.  相似文献   

13.
Summary The structure of mitochondrial DNA (mt-DNA) from sugarbeet (Beta vulgaris L.) has been studied by biochemical methods and electron microscopy. It was found to be complex multipartite consisting of two main classes of molecules: high molecules weight (HMW) mtDNA and low molecular weight (LMW) mtDNA. The HMW mtDNA consists of rosette-like structures and globules resembling chromomeres (150–200nm). A typical rosette has a protein core and radially stemming closed DNA loops (from 0.6-1.5 m). The number of loops in a rosette varies from 16–30. The bulk of HMW mtDNAs are represented by interconnected rosettes (total contour length about 130–160 m, 403–496 kbp). Such large circular DNAs may be evidence of the master chromosome arrangement of the sugarbeet genome. Globules and rosettes are interconnected by thick and thin DNA fibrils, along which nucleosome- and nucleomere-like structures are distributed. The LWM mtDNA is composed of two groups of supercoiled circular molecules, 0,2–1.5 m and 0.02–0.05 m in size. Electrophoretic analysis demonstrated that LWM mtDNA is represented by minicircle plasmid-like DNA molecules of 1.3, 1.4 and 1.6 kbp.  相似文献   

14.
The chloroplast genomes of flowering plants are circular DNA molecules, 120 to 160 kilobase pairs long, encoding the rRNA, all tRNAs, and 21 r-proteins of the chloroplast translational apparatus as well as key protein components of the photosynthetic and carbon reduction cycle reactions. In this paper we describe some characteristics of the rye chloroplast (plastid) genome and the construction and characterization of a clone library of 93% of its DNA in a plasmid and a cosmid vector. The size of rye chloroplast DNA is estimated at 135 kbp, similar to that for wheat and rice but slightly smaller than the estimate for maize (139 kbp). Chloroplast ribosome deficiency is induced in rye seedlings by germination and growth at 32 degrees-34 degrees C; therefore these clones would be useful for analyzing the regulation of chloroplast ribosome synthesis in higher plants, a process that requires coordinate expression of genes located in the nucleus and the chloroplast.  相似文献   

15.
16.
Summary As in wild-type Nicotiana tabacum L., two satellite DNAs having densities of 1.700 and 1.705 g cm–3 in CsCl were identified in the organelle fraction of homogenates made from variegated leaves of a cytoplasmic mutant of N. tabacum. As the proportion of white to green tissue increased a great reduction in the 1.700 chloroplast DNA occurred correlated with a concomitant reduction in the total number of defective and normal chloroplasts per cell. At the same time, there was an absolute increase in the 1.705 satellite DNA. Separation of the two satellite DNAs was achieved by one cycle of purification on NaI gradients. When the 1.700 chloroplast DNAs from white and from green tissue of variegated leaves were compared, identical properties were found by the conventional buoyant density, T m and renaturation kinetics measurements. However, using a specially constructed difference melting system, the 1.700 DNA from defective chloroplasts was shown to have an approximately 1% higher GC composition than the DNA from normal chloroplasts. Also, by renaturation of a mixture of alkali denatured normal and defective chloroplast DNAs and subsequent spreading in formamide for electron microscopy, internal regions of mismatching were observed. The nonhomologous region corresponded to about 500–1000 base pairs. No differences in composition of the 1.705 satellite DNA derived from white or green tissues were detected either by difference melting or formation of heteroduplexes.  相似文献   

17.
Using CsCl-Hoechst dye or CsCl-ethidium bromide gradients, satellite and nuclear DNAs were separated and characterized in three marine dinoflagellates: Glenodinium sp., and two toxic dinoflagellates, Protogonyaulax tamarensis and Protogonyaulax catenella. In all three dinoflagellates, the lowest density fraction, satellite DNA1, hybridized to chloroplast genes derived from terrestrial plants and/or other algae. Dinoflagellate chloroplast DNAs exhibited molecular sizes of 114 to 125 kilobase pairs, which is consistent with plastid sizes determined for other chromophytic algae (120-150 kilobase pairs). Mitochondrial DNA was not resolved from nuclear DNA in this system. Two additional satellite DNAs, satellite DNA2 and satellite DNA3, recovered from P. tamarensis and P. catenella were similar to one another, both within and between species, when characterized by restriction enzyme analysis. These satellites were 85 to 95 kilobase pairs in size, and exhibited restriction fragments that hybridized to yeast nuclear ribosomal RNA genes. Restriction enzyme analyses and DNA hybridization studies of cpDNA document that the two Protogonyaulax isolates are not evolutionarily identical.  相似文献   

18.
Chloroplast ribosomal DNA from Euglena gracilis was partially purified, digested with restriction endonucleases BamHI or EcoRI and cloned into bacterial plasmids. Plasmids containing the ribosomal DNA were identified by their ability to hybridize to chloroplast ribosomal RNA and were physically mapped using restriction endonucleases BamHI, EcoRI, HindIII and HpaI. The nucleotide sequences coding for the 16S and the 23S chloroplast ribosomal RNAs were located on these plasmids by hybridizing the individual RNAs to denatured restriction endonuclease DNA fragments immobilized on nitrocellulose filters. Restriction endonuclease fragments from chloroplast DNA were analyzed in a similar fashion. These data permitted the localization on a BamHI map of the chloroplast DNA three tandemly arranged chloroplast ribosomal RNA genes. Each ribosomal RNA gene consisted of a 4.6 kilobase pair region coding for the 16S and 23S ribosomal RNAs and a 0.8 kilobase pair spacer region. The chloroplast ribosomal DNA represented 12% of the chloroplast DNA and is G + C rich.  相似文献   

19.
The nuclear and chloroplast ribosomal DNAs from Euglena were shown to have specific regions of nucleotide sequence homology. The regions of homology were identified by hybridization of restriction endonuclease DNA fragments of cloned chloroplast and nuclear ribosomal DNAs to one another. The regions of homology between these two ribosomal DNAs were in that part of the genes that code for the 3′ end of the small rRNAs (16S and 19S) and near or at the DNA sequences coding for the 5S RNAs. The nucleotide sequence homology between these regions was estimated to be approximately 94% by the melting point depression of a hybrid formed between the two ribosomal DNAs.  相似文献   

20.
J D Palmer  W F Thompson 《Cell》1982,29(2):537-550
We examined the arrangement of sequences common to seven angiosperm chloroplast genomes. The chloroplast DNAs of spinach, petunia and cucumber are essentially colinear. They share with the corn chloroplast genome a large inversion of approximately 50 kb relative to the genomes of three legumes--mung bean, pea and broad bean. There is one additional rearrangement, a second, smaller inversion within the 50 kb inversion, which is specific to the corn genome. These two changes are the only detectable rearrangements that have occurred during the evolution of the species examined (corn, spinach, petunia, cucumber and mung bean) whose chloroplast genomes contain a large inverted repeat sequence of 22-25 kb. In contrast, we find extensive sequence rearrangements in comparing the pea and broad bean genomes, both of which have deleted one entire segment of the inverted repeat, and also in comparing each of these to the mung bean genome. Thus there is a relatively stable arrangement of sequences in those genomes with the inverted repeat and a much more dynamic arrangement in those that have lost it. We discuss several explanations for this correlation, including the possibility that the inverted repeat may play a direct role in maintaining a conserved arrangement of chloroplast DNA sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号