首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 5 毫秒
1.
2.
Ion flow in many voltage-gated K(+) channels (VGK), including the (human ether-a-go-go-related gene) hERG channel, is regulated by reversible collapse of the selectivity filter. hERG channels, however, exhibit low sequence homology to other VGKs, particularly in the outer pore helix (S5) domain, and we hypothesize that this contributes to the unique activation and inactivation kinetics in hERG K(+) channels that are so important for cardiac electrical activity. The S5 domain in hERG identified by NMR spectroscopy closely corresponded to the segment predicted by bioinformatics analysis of 676 members of the VGK superfamily. Mutations to approximately every third residue, from Phe(551) to Trp(563), affected steady state activation, whereas mutations to approximately every third residue on an adjacent face and spanning the entire S5 segment perturbed inactivation, suggesting that the whole span of S5 experiences a rearrangement associated with inactivation. We refined a homology model of the hERG pore domain using constraints from the mutagenesis data with residues affecting inactivation pointing in toward S6. In this model the three residues with maximum impact on activation (W563A, F559A, and F551A) face out toward the voltage sensor. In addition, the residues that when mutated to alanine, or from alanine to valine, that did not express (Ala(561), His(562), Ala(565), Trp(568), and Ile(571)), all point toward the pore helix and contribute to close hydrophobic packing in this region of the channel.  相似文献   

3.
4.
5.
The estrogenic and antiestrogenic activities of tamoxifen and 4-hydroxytamoxifen have been measured on the expression of two estrogen-regulated RNAs (pNR-1 and pNR-2) in the MCF7 human breast cancer cell line cultured in phenol red-free medium. The two antiestrogens increased the level of the pNR-1 RNA to about 80% of the estradiol-induced level, and the induction by estradiol was not significantly antagonized by either antiestrogen. In contrast, the pNR-2 mRNA was only increased to about 10% of the estradiol-induced level, and its induction by estradiol was antagonized by both tamoxifen and 4-hydroxytamoxifen. Thus, the two RNAs respond in dramatically different ways to these antiestrogens. 4-Hydroxytamoxifen and estradiol have similar affinities for the estrogen receptor; however, the induction of both RNAs by 4-hydroxytamoxifen required a 10-fold higher concentration than estradiol for maximum agonist activity, and a 500-fold molar excess was required to antagonize the induction by estradiol. Tamoxifen has a 20-100-fold lower affinity than estradiol for the estrogen receptor. A 200-fold higher concentration was required for maximum agonist activity and a 10,000-fold molar excess to antagonize the induction by estradiol. These results emphasize the complexity of antiestrogen action in human breast cancer cells.  相似文献   

6.
The model of the estrogen receptor as a dimer of identical, interacting subunits and data obtained by Sasson and Notides (1988, Mol. Endocrinol. 2, 307-312) were used to find the standard free energy changes that describe the binding of estradiol and 4-hydroxytamoxifen to the estrogen receptor. For the binding of estradiol or 4-hydroxytamoxifen to the estrogen receptor the data do not deviate systematically from the best fit to the model. The standard free energy change for binding of one molecule of estradiol at one site and one molecule of 4-hydroxytamoxifen at the second site of estrogen receptor indicates that 4-hydroxytamoxifen antagonizes the binding of estradiol to the estrogen receptor.  相似文献   

7.
The binding characteristics of [3H]estradiol and 4-[3H]hydroxytamoxifen (a powerful estradiol antagonist) in the chick oviduct cytosol was analyzed by sucrose gradient centrifugation and dissociation kinetics experiments at 28°C. Heating the cytoplasmic estradiol-estrogen receptor complexes led to the ‘transformation’ of the receptor; as with the estrogen receptor in other target tissues and species, the transformed receptor sedimented in the 5 S region of sucrose gradients containing 0.4 M KCI and had a slower rate of dissociation of bound estradiol. Upon heating, the cytoplasmic 4-hydroxytamoxifen complexes also appeared to undergo similar changes in their physical states as analyzed by sedimentation rates and dissociation kinetics, and we conclude that antiestrogen can transform the receptor. Sodium molybdate inhibited the temperature mediated changes with both estrogen and antiestrogen complexes. Slight but consistent differences in the sedimentation coefficient and rate of ligand dissociation were observed between the complexes formed by estradiol and 4-hydroxytamoxifen but the relevance to opposite biological activities remains unknown.  相似文献   

8.
9.
10.
The effect of an IgM class monoclonal antibody (B36) (Greene, G. L., Fitch, F. W., and Jensen, E. V. (1980) Proc. Natl. Acad. Sci. U. S. A. 77, 157-161) raised against the calf uterine estrogen receptor was tested in vitro on certain parameters of estrogen receptor activation by estradiol or 4-hydroxytamoxifen, a potent anti-estrogen. The following results were obtained. The antibody prevented the decrease in the dissociation rate of the receptor-estradiol complex which results from activation of the complex, whereas it did not affect the dissociation rate of the receptor-4-hydroxytamoxifen complex, which remains unchanged upon activation. The antibody also increased the dissociation rate of the preactivated receptor-estradiol complex. The antibody protected the naked estrogen receptor against heat-inactivation. B36 partially inhibited the binding of the estradiol- and 4-hydroxy-tamoxifen-receptor complexes to DNA adsorbed onto cellulose, but did not reverse the receptor-DNA binding. This inhibition was not overcome by higher DNA concentrations and was more pronounced for the receptor interacting with estrogen than with anti-estrogen. All these effects were specific since they were related to antibody/antigen recognition and were dose-dependent. These results indicate that the binding of the antibody to the estrogen-activated receptor induces a conformational change in the receptor and that the antibody can prevent and overcome the effect of activation whatever its mechanism. They also confirm that the conformations of the estrogen receptor differ when bound to estradiol or to 4-hydroxytamoxifen.  相似文献   

11.
Two monoclonal antibodies (D547 and H222), obtained against the estrogen receptor from MCF-7 breast cancer cells, were used to study the estrogen receptor from fetal guinea-pig uterus bound to estradiol or to the antiestrogens tamoxifen and 4-hydroxytamoxifen. The estradiol-receptor complex binds partially to the monoclonal antibody D547, shifting its sedimentation coefficient in high salt sucrose density gradients from 4.5S to 7.5S. Recently, we demonstrated that the form selectively recognized by this monoclonal antibody is the activated form of the receptor. The estrogen receptor complexed with tamoxifen or 4-hydroxytamoxifen is also partially recognized by this monoclonal antibody but the fraction of total receptor bound to the antibody is significantly less than for the receptor complexed with estradiol. Another series of experiments showed that the monoclonal antibody H222, which recognizes a different antigenic site on the receptor molecule, binds all the estradiol-receptor complex (independently of the degree of activation), shifting its sedimentation coefficient to 7.5S. However, even if all the 4-hydroxytamoxifen-receptor complex is bound by this antibody, only a fraction of the receptor is recognized when it is complexed with tamoxifen. These data show different interactions between the estradiol-, tamoxifen- and 4-hydroxytamoxifen-receptor complexes and the two monoclonal antibodies tested and suggest that these compounds induce different conformational modifications of the estrogen receptor molecule.  相似文献   

12.
13.
14.
The crystal structures of the ligand-binding core of the agonist complexes of the glutamate receptor-B (GluR-B) subunit of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-selective glutamate receptor indicate that the distal anionic group of agonist molecules are stabilized by interactions with an N-terminal region of an alpha-helix (helix F) in the lobe 2 ("domain 2," Armstrong, N., and Gouaux, E. (2000) Neuron 28, 165-181) of the two-lobed ligand-binding domain. We used site-directed mutagenesis to further analyze the role of this region in the recognition of both agonists and antagonists by the AMPA receptor. Wild-type and mutated versions of the ligand-binding domain of GluR-D were expressed in insect cells as secreted soluble polypeptides and subjected to binding assays using [(3)H]AMPA, an agonist, and [(3)H]Ro 48-8587 (9-imidazol-1-yl-8-nitro-2,3,5,6-tetrahydro[1,2,4]triazolo[1,5-c] quinazoline-2,5-dione), a high affinity AMPA receptor antagonist, as radioligands. Single alanine substitutions at residues Leu-672 and Thr-677 severely affected the affinities for all agonists, as seen in ligand competition assays, whereas similar mutations at residues Asp-673, Ser-674, Gly-675, Ser-676, and Lys-678 selectively affected the binding affinities of one or two of the agonists. In striking contrast, the binding affinities of [(3)H]Ro 48-8587 and of another competitive antagonist, 6,7-dinitroquinoxaline-2,3-dione, were not affected by any of these alanine mutations, suggesting the absence of critical side-chain interactions. Together with ligand docking experiments, our results indicate a selective engagement of the side chains of the helix F region in agonist binding, and suggest that conformational changes involving this region may play a critical role in receptor activation.  相似文献   

15.
16.
Recent literature implicates a regulatory function of the juxtamembrane domain (JMD) in receptor tyrosine kinases. Mutations in the JMD of c-Kit and Flt3 are associated with gastrointestinal stromal tumors and acute myeloid leukemias, respectively. Additionally, autophosphorylated Tyr559 in the JMD of the colony stimulating factor-1 (CSF-1) receptor (CSF-1R) binds to Src family kinases (SFKs). To investigate SFK function in CSF-1 signaling we established stable 32D myeloid cell lines expressing CSF-1Rs with mutated SFK binding sites (Tyr559-TFI). Whereas binding to I562S was not significantly perturbed, Y559F and Y559D exhibited markedly decreased CSF-1-dependent SFK association. All JMD mutants retained intrinsic kinase activity, but Y559F, and less so Y559D, showed dramatically reduced CSF-1-induced autophosphorylation. CSF-1-mediated wild-type (WT)-CSF-1R phosphorylation was not markedly affected by SFK inhibition, indicating that lack of SFK binding is not responsible for diminished Y559F phosphorylation. Unexpectedly, cells expressing Y559F were hyperproliferative in response to CSF-1. Hyperproliferation correlated with prolonged activation of Akt, ERK, and Stat5 in the Y559F mutant. Consistent with a defect in receptor negative regulation, c-Cbl tyrosine phosphorylation and CSF-1R/c-Cbl co-association were almost undetectable in the Y559F mutant. Furthermore, Y559F underwent reduced multiubiquitination and delayed receptor internalization and degradation. In conclusion, we propose that Tyr559 is a switch residue that functions in kinase regulation, signal transduction and, indirectly, receptor down-regulation. These findings may have implications for the oncogenic conversion of c-Kit and Flt3 with JMD mutations.  相似文献   

17.
Bisphenol A, 2,2-bis(4-hydroxyphenyl)propane, is an estrogenic endocrine disruptor that influences various physiological functions at very low doses, even though bisphenol A itself is ineffectual as a ligand for the estrogen receptor. We recently demonstrated that bisphenol A binds strongly to human estrogen-related receptor gamma, one of 48 human nuclear receptors. Bisphenol A functions as an inverse antagonist of estrogen-related receptor gamma to sustain the high basal constitutive activity of the latter and to reverse the deactivating inverse agonist activity of 4-hydroxytamoxifen. However, the intrinsic binding mode of bisphenol A remains to be clarified. In the present study, we report the binding potentials between the phenol-hydroxyl group of bisphenol A and estrogen-related receptor gamma residues Glu275 and Arg316 in the ligand-binding domain. By inducing mutations in other amino acids, we evaluated the change in receptor binding capability of bisphenol A. Wild-type estrogen-related receptor gamma-ligand-binding domain showed a strong binding ability (K(D) = 5.70 nm) for tritium-labeled [(3)H]bisphenol A. Simultaneous mutation to Ala at positions 275 and 316 resulted in an absolute inability to capture bisphenol A. However, individual substitutions revealed different degrees in activity reduction, indicating the chief importance of phenol-hydroxyl<-->Arg316 hydrogen bonding and the corroborative role of phenol-hydroxyl<-->Glu275 hydrogen bonding. The data obtained with other characteristic mutations suggested that these hydrogen bonds are conducive to the recruitment of phenol compounds by estrogen-related receptor gamma. These results clearly indicate that estrogen-related receptor gamma forms an appropriate structure presumably to adopt an unidentified endogenous ligand.  相似文献   

18.
Zhong L  Skafar DF 《Biochemistry》2002,41(13):4209-4217
Mutation of tyrosine 537 (Y537) of the human estrogen receptor-alpha (hERalpha) produces receptors having a range of constitutive activity, which suggests that this residue modulates the conformational changes of the receptor. We investigated the effect of several mutations at this position, to phenylalanine (Y537F), to serine (Y537S), and to glutamic acid (Y537E), on the hormone-binding properties of the receptor. The affinities of the wt, the Y537F mutant, and the Y537S mutant for estradiol were similar: K(a) = 2.2 +/- 0.2, 3.9 +/- 0.5, and 2.8 +/- 0.4 nM(-1), respectively. By contrast, the affinity of the Y537E mutant for estradiol was reduced 10-fold, K(a) = 0.2 +/- 0.1 nM(-1). All proteins bound [(3)H]estradiol with a positive cooperative mechanism (n(H) = 1.7-1.9), indicating they can form dimers. The wt receptor and the Y537S and Y537E mutants exhibited biphasic dissociation kinetics, which is also indicative of dimerization. Surprisingly, the half-lives of the slow component of the wt and the Y537E mutant were indistinguishable, 118 +/- 3.4 and 122 +/- 4.5 min, respectively, even though the affinity of the Y537E mutant for hormone was reduced 10-fold. The half-life of the slow component of the Y537S mutant was reduced to 96.5 +/- 3.8 min. Molecular models were constructed and compared to identify changes in the structure that correlate with the observed effects on hormone binding. Local alterations in hydrogen bonding, the position of side chains, and the position of the peptide backbone were observed. Taken together, these results show that mutations at Y537 selectively alter the affinity and kinetics of hormone binding to the receptor, and are consistent with the idea that the estradiol-estrogen receptor interaction can follow more than one pathway.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号