首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 242 毫秒
1.
Antennal sensory neurons in the fruit fly Drosophila melanogaster express circadian rhythms in the clock gene PERIOD (PER) and appear to be sufficient and necessary for circadian rhythms in olfactory responses. Given recent evidence for daily rhythms of pheromone responses in the antenna of the hawkmoth Manduca sexta, we examined whether a peripheral PER-based circadian clock might be present in this species. Several different cell types in the moth antenna were recognized by monoclonal antibodies against Manduca sexta PER. In addition to PER-like staining of pheromone-sensitive olfactory receptor neurons and supporting cells, immunoreactivity was detected in beaded branches contacting the pheromone-sensitive sensilla. The nuclei of apparently all sensory receptor neurons, of sensilla supporting cells, of epithelial cells, and of antennal nerve glial cells were PER-immunoreactive. Expression of per mRNA in antennae was confirmed by the polymerase chain reaction, which showed stronger expression at Zeitgeber-time 15 compared with Zeitgeber-time 3. This evidence for the expression of per gene products suggests that the antenna of the hawkmoth contains endogenous circadian clocks.  相似文献   

2.
Drosophila CRY is a deep brain circadian photoreceptor   总被引:10,自引:0,他引:10  
cry (cryptochrome) is an important clock gene, and recent data indicate that it encodes a critical circadian photoreceptor in Drosophila. A mutant allele, cry(b), inhibits circadian photoresponses. Restricting CRY expression to specific fly tissues shows that CRY expression is needed in a cell-autonomous fashion for oscillators present in different locations. CRY overexpression in brain pacemaker cells increases behavioral photosensitivity, and this restricted CRY expression also rescues all circadian defects of cry(b) behavior. As wild-type pacemaker neurons express CRY, the results indicate that they make a striking contribution to all aspects of behavioral circadian rhythms and are directly light responsive. These brain neurons therefore contain an identified deep brain photoreceptor, as well as the other circadian elements: a central pace-maker and a behavioral output system.  相似文献   

3.
The Drosophila circadian clock is an ideal model system for teasing out the molecular mechanisms of circadian behavior and the means by which animals synchronize to day-night cycles. The clock that drives behavioral rhythms, located in the lateral neurons in the central brain, consists of a feedback loop of the circadian genes period (per) and timeless (tim). The molecular cycle, roughly 24 h long, is constantly reset by the environment. This review focuses on the main input pathways of the dominant circadian zeitgeber, light. Light acts directly on the clock primarily through cryptochrome (cry), a deep brain blue-light photoreceptor. CRY activation causes rapid TIM degradation, which is a predicted means of resetting the clock both on a daily basis at dawn and on an acute basis following an entraining light pulse during the night hours. In the absence of cry, the clock can still be driven by photic input through the visual system, though the mechanisms underlying this entrainment are unclear. Temperature can also entrain the clock, although the mechanisms by which this occurs are also unclear.  相似文献   

4.
The circadian variation of pheromone production in the turnip moth, Agrotis segetum, was characterized by quantifying (Z)-7-dodecenyl acetate (Z7-12:OAc), the most abundant pheromone component produced by female turnip moth, at different times of day. Under 17:7 h light-dark cycle (LD), the peak of Z7-12:OAc production occurred around 4 h into the scotophase, while there was very little pheromone production during the photophase. When females were maintained under constant darkness (DD), the periodicity of pheromone production was sustained for 3 consecutive days. Furthermore, the rhythm in pheromone production could be entrained to a shifted LD. These results demonstrate that the pheromone production in the turnip moth is regulated endogenously by a circadian clock. To understand how the circadian rhythm of pheromone production is generated, circadian variation of pheromone- biosynthesis-activating neuropeptide (PBAN)-like activity in the brain-suboesophageal ganglion complexes (Br-SOG), hemolymph, and ventral nerve cord (VNC) was also examined. Under both LD and DD, only the VNC displayed a circadian variation in the PBAN-like activity, which was significantly higher during the late-photophase than that in the scotophase. In addition, the present study showed that removal of VNC in isolated abdomen did not affect PBAN stimulation of pheromone production, while severing the VNC impaired normal pheromone production. The role of Br-SOG, VNC, and hemolymph in the regulation of the periodicity of pheromone production is discussed.  相似文献   

5.
Damulewicz M  Pyza E 《PloS one》2011,6(6):e21258
In the first optic neuropil (lamina) of the fly's visual system, two interneurons, L1 and L2 monopolar cells, and epithelial glial cells show circadian rhythms in morphological plasticity. These rhythms depend on clock gene period (per) and cryptochrome (cry) expression. In the present study, we found that rhythms in the lamina of Drosophila melanogaster may be regulated by circadian clock neurons in the brain since the lamina is invaded by one neurite extending from ventral lateral neurons; the so-called pacemaker neurons. These neurons and the projection to the lamina were visualized by green fluorescent protein (GFP). GFP reporter gene expression was driven by the cry promotor in cry-GAL4/UAS-GFP transgenic lines. We observed that the neuron projecting to the lamina forms arborizations of varicose fibers in the distal lamina. These varicose fibers do not form synaptic contacts with the lamina cells and are immunoreactive to the antisera raised against a specific region of Schistocerca gregaria ion transport peptide (ITP). ITP released in a paracrine way in the lamina cortex, may regulate the swelling and shrinking rhythms of the lamina monopolar cells and the glia by controlling the transport of ions and fluids across cell membranes at particular times of the day.  相似文献   

6.
The clock mechanism for circatidal rhythm has long been controversial, and its molecular basis is completely unknown. The mangrove cricket, Apteronemobius asahinai, shows two rhythms simultaneously in its locomotor activity: a circatidal rhythm producing active and inactive phases as well as a circadian rhythm modifying the activity intensity of circatidal active phases. The role of the clock gene period (per), one of the key components of the circadian clock in insects, was investigated in the circadian and circatidal rhythms of A. asahinai using RNAi. After injection of double-stranded RNA of per, most crickets did not show the circadian modulation of activity but the circatidal rhythm persisted without a significant difference in the period from controls. Thus, per is functionally involved in the circadian rhythm but plays no role, or a less important role, in the circatidal rhythm. We conclude that the circatidal rhythm in A. asahinai is controlled by a circatidal clock whose molecular mechanism is different from that of the circadian clock.  相似文献   

7.
8.
The rice stem borer, Chilo suppressalis Walker, is one of the most important global agricultural pests. C. suppressalis has distinct rice and water-oat host populations. Asynchrony in sexual activity is thought to be the main factor maintaining reproductive segregation between these populations, particularly the obvious difference in the circadian rhythm of female calling activity between populations. However, the mechanism responsible for this difference in the timing of female calling is poorly understood. The circadian clock is an essential regulator of daily behavioral rhythms in insects, including female calling. We investigated the variation in circadian clock genes of the rice and water-oat populations of C. suppressalis. We did this by comparing deduced amino acid sequences and the expression patterns of seven circadian clock genes (clock, cycle, period, timeless, timeout, cryptochrome1, and cryptochrome2) between females from each population. We found that the two populations had different variants of the timeout and cryptochrome1 genes and differed in the expression of period, timeless and timeout. This suggests that population-related variation in the circadian clock genes period, timeless, timeout and cryptochrome1 could be responsible for the different circadian rhythms of female calling in these host population of C. suppressalis. These results provide new insights into the molecular mechanisms underlying asynchronous sexual activity in insect populations and suggest new topics for future research on the origins and maintenance of population differentiation in insects.  相似文献   

9.
林欣大  劳冲  姚云  杜永均 《昆虫学报》2015,58(3):237-243
【目的】信息素是个体之间传递信息的重要分子,研究性信息素对斜纹夜蛾 Spodoptera litura 嗅觉相关基因表达的影响对于增加性信息素作用机理的认识及其应用有重要的意义。【方法】本研究通过实时定量PCR(qRT-PCR)技术探究在性信息素刺激处理条件下,斜纹夜蛾成虫嗅觉相关基因 abp, pbp 和 or 表达水平的变化;利用性信息素在田间诱捕斜纹夜蛾雄蛾,并通过自动计数器记录每小时诱虫量,从而间接显示其交配行为的节律性。【结果】斜纹夜蛾雄虫触角中嗅觉相关基因abp, pbp 和 or 的表达具有节律特性。经性信息素化合物(Z9, Z11-14:OAc+Z9, Z12-14:OAc)刺激处理后,abp, pbp 和 or 表达量也发生了显著的改变。通过记录田间性信息素诱捕器在一天中不同时间段内诱捕的雄蛾数量,发现诱捕到的斜纹夜蛾也具有节律特性。【结论】基因表达水平上的节律特性可能与雄虫交配活动的节律相关联,说明性信息素处理也在一定程度上改变了其节律及其对性信息素的神经反应。这一结果也首次从基因水平证明性信息素的刺激处理提高了周缘神经系统对性信息素反应的敏感性,有助于我们理解性信息素作用的分子机理,对迷向及性诱和测报应用具有指导意义。  相似文献   

10.
郑凯迪  杜永均 《昆虫学报》2012,55(9):1093-1102
蛾类昆虫性信息素受体首先从烟芽夜蛾Heliothis virescens和家蚕Bombyx mori中鉴定出来, 到目前为止已经克隆得到了19种蛾类昆虫的几十种性信息素受体基因, 并且这些基因在系统发育树中聚成一个亚群。性信息素受体从蛾类蛹期开始表达, 主要表达在雄性触角的毛形感器中, 少部分受体在雌性触角、 雄性触角其他感器以及身体其他部位中也有表达。大部分蛾类性信息素受体的配体并不是单一的, 而是能够对多种性信息素组分有反应, 部分性信息素受体还能够识别性信息素以外的其他物质, 还有一部分性信息素受体的识别配体目前尚不清楚。另外发现在雌性蛾类触角中也存在一些嗅觉受体能够识别雄性分泌的性信息素。在蛾类性信息素受体与性信息素识别的过程中, 性信息素结合蛋白不仅能够特异性地运送配体到嗅觉神经元树状突上, 还能够提高性信息素与性信息素受体之间的结合效率。另外, OrCo类受体与性信息素受体共表达在嗅觉神经元中, 在蛾类性信息素受体与配体的识别过程中扮演了重要角色。但是蛾类信息素对神经元刺激的终止并非由性信息素受体控制, 而是由细胞中的气味降解酶等其他因子调控。蛾类性信息素受体研究中还有很多疑问需要解答, 其过程可能比我们想象的更为复杂。  相似文献   

11.
12.
Devlin PF  Kay SA 《The Plant cell》2000,12(12):2499-2509
The circadian clock is entrained to the daily cycle of day and night by light signals at dawn and dusk. Plants make use of both the phytochrome (phy) and cryptochrome (cry) families of photoreceptors in gathering information about the light environment for setting the clock. We demonstrate that the phytochromes phyA, phyB, phyD, and phyE act as photoreceptors in red light input to the clock and that phyA and the cryptochromes cry1 and cry2 act as photoreceptors in blue light input. phyA and phyB act additively in red light input to the clock, whereas cry1 and cry2 act redundantly in blue light input. In addition to the action of cry1 as a photoreceptor that mediates blue light input into the clock, we demonstrate a requirement of cry1 for phyA signaling to the clock in both red and blue light. Importantly, Arabidopsis cry1 cry2 double mutants still show robust rhythmicity, indicating that cryptochromes do not form a part of the central circadian oscillator in plants as they do in mammals.  相似文献   

13.
Peng Chen  Jianfa Zhang 《FEBS letters》2010,584(8):1597-1601
Disruption in circadian rhythms either by mutation in mice or by shiftwork in people, is associated with an increased risk for the development of multiple organ diseases. In turn, organ disease may influence the function of clock genes and peripheral circadian systems. Here we showed that hepatic fibrosis induced by carbon tetrachloride in mice leads to alterations in the circadian rhythms of hepatic clock genes. Especially, we found an impaired daily Cry2 rhythm in the fibrotic livers, with markedly decreased levels during the day time while compared with control livers. Associatively, the expressions of two important clock-regulated genes peroxisome proliferator-activated receptor alpha and cytochrome P450 oxidoreductase lost circadian rhythm with significantly decreased levels during the light-dark (12/12 h) cycle in fibrotic livers.  相似文献   

14.
15.
Circadian clocks include control systems for organizing daily behavior. Such a system consists of a time-keeping mechanism (the clock or pacemaker), input pathways for entraining the clock, and output pathways for producing overt rhythms in behavior and physiology. In Drosophila melanogaster, as in mammals, neural circuits play vital roles in all three functional subdivisions of the circadian system. Regarding the pacemaker, multiple clock neurons, each with cell-autonomous pacemaker capability, are coupled to each other in a network. The outputs of different sets of clock neurons in this network combine to produce the normal bimodal pattern of locomotor activity observed in Drosophila. Regarding input, multiple sensory modalities (including light, temperature, and pheromones) use their own circuitry to entrain the clock. Regarding output, distinct circuits are likely involved for controlling the timing of eclosion and for generating the locomotor activity rhythms. This review summarizes work on all of these circadian circuits, and discusses the broader utility of studying the fly's circadian system.  相似文献   

16.
Recent studies in mammals have demonstrated a central role for the circadian clock in maintaining metabolic homeostasis. In spite of these advances, however, little is known about how these complex pathways are coordinated. Here, we show that fundamental aspects of the circadian control of metabolism are conserved in the fruit fly Drosophila. We assay feeding behavior and basic metabolite levels in individual flies and show that, like mammals, Drosophila display a rapid increase in circulating sugar following a meal, which is subsequently stored in the form of glycogen. These daily rhythms in carbohydrate levels are disrupted in clock mutants, demonstrating a critical role for the circadian clock in the postprandial response to feeding. We also show that basic metabolite levels are coordinated in a clock-dependent manner and that clock function is required to maintain lipid homeostasis. By examining feeding behavior, we show that flies feed primarily during the first 4 hours of the day and that light suppresses a late day feeding bout through the cryptochrome photoreceptor. These studies demonstrate that central aspects of feeding and metabolism are dependent on the circadian clock in Drosophila. Our work also uncovers novel roles for light and cryptochrome on both feeding behavior and metabolism.  相似文献   

17.
Mating in moths is generally mediated by female-produced sex pheromones. Mating activity, female pheromone production/release and male pheromone responsiveness all show diurnal variations in many species. We found that the response of the male Egyptian cotton leafworm, Spodoptera littoralis, to sex pheromone gland extracts showed a diel rhythm in olfactometer tests, and the variation was persistent for at least 1 day in constant darkness. High male response to sex pheromone was correlated in time with high mating and locomotor activity. Male S. littoralis, maintained in constant darkness and exposed to pheromone gland extracts on a daily basis, showed an induced temporal variation in response after several days, in contrast to unexposed males. This suggests that in the absence of other external zeitgebers, exposure to sex pheromone may function to synchronise circadian behavioural rhythms in male moths. The daily rhythm in mating activity in S. littoralis is also shown to be persistent for at least 2 days in constant darkness. Pairs mated significantly less when either the male or female had been raised in a light:dark cycle 10 h out of phase, indicating that the proposed circadian rhythm in mating activity is composed of rhythmic mating preference/ability in both sexes.  相似文献   

18.
Pheromones play important roles in female and male behaviour in the filamentous ascomycete fungi. To begin to explore the role of pheromones in mating, we have identified the genes encoding the sex pheromones of the heterothallic species Neurospora crassa. One gene, expressed exclusively in mat A strains, encodes a polypeptide containing multiple repeats of a putative pheromone sequence bordered by Kex2 processing sites. Strains of the opposite mating type, mat a, express a pheromone precursor gene whose polypeptide contains a C-terminal CAAX motif predicted to produce a mature pheromone with a C-terminal carboxy-methyl isoprenylated cysteine. The predicted sequences of the pheromones are remarkably similar to those encoded by other filamentous ascomycetes. The expression of the pheromone precursor genes is mating type specific and is under the control of the mating type locus. Furthermore, the genes are highly expressed in conidia and under conditions that favour sexual development. Both pheromone precursor genes are also regulated by the endogenous circadian clock in a time-of-day-specific fashion, supporting a role for the clock in mating.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号