首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prediction of plant microRNA targets   总被引:111,自引:0,他引:111  
Rhoades MW  Reinhart BJ  Lim LP  Burge CB  Bartel B  Bartel DP 《Cell》2002,110(4):513-520
  相似文献   

2.
MicroRNAs (miRNAs) are a novel class of short, endogenous non-coding small RNAs that have the ability to base pair with their target mRNAs to repress their translation or induce their degradation in both plants and animals. To identify heavy metal stress-regulated novel miRNAs, we constructed a library of small RNAs from rice seedlings that were exposed to toxic levels of cadmium (Cd2+). Sequencing of the library and subsequent analysis revealed 19 new miRNAs representing six families. These cloned new rice miRNAs have sequence conservation neither in Arabidopsis nor in any other species. Most of the new rice miRNAs were up- or down-regulated in response to the metal exposure. On the base of sequence complementarity, a total of 34 miRNA targets were predicted, of which 23 targets are functionally annotated and the other 11 records belong to unknown proteins. Some predicted targets of miRNAs are associated with the regulation of the response to heavy metal-induced stresses. In addition to the new miRNAs, we detected nine previously reported miRNAs and 56 other novel endogenous small RNAs in rice. These findings suggest that the number of new miRNAs in rice is unsaturated and some of them may play critical roles in plant responses to environmental stresses.  相似文献   

3.
Cloning and characterization of microRNAs from rice   总被引:31,自引:0,他引:31       下载免费PDF全文
Sunkar R  Girke T  Jain PK  Zhu JK 《The Plant cell》2005,17(5):1397-1411
  相似文献   

4.
Sunkar R  Zhu JK 《The Plant cell》2004,16(8):2001-2019
MicroRNAs (miRNAs) and short interfering RNAs (siRNAs) are small noncoding RNAs that have recently emerged as important regulators of mRNA degradation, translational repression, and chromatin modification. In Arabidopsis thaliana, 43 miRNAs comprising 15 families have been reported thus far. In an attempt to identify novel and abiotic stress regulated miRNAs and siRNAs, we constructed a library of small RNAs from Arabidopsis seedlings exposed to dehydration, salinity, or cold stress or to the plant stress hormone abscisic acid. Sequencing of the library and subsequent analysis revealed 26 new miRNAs from 34 loci, forming 15 new families. Two of the new miRNAs from three loci are members of previously reported miR171 and miR319 families. Some of the miRNAs are preferentially expressed in specific tissues, and several are either upregulated or downregulated by abiotic stresses. Ten of the miRNAs are highly conserved in other plant species. Fifty-one potential targets with diverse function were predicted for the newly identified miRNAs based on sequence complementarity. In addition to miRNAs, we identified 102 other novel endogenous small RNAs in Arabidopsis. These findings suggest that a large number of miRNAs and other small regulatory RNAs are encoded by the Arabidopsis genome and that some of them may play important roles in plant responses to environmental stresses as well as in development and genome maintenance.  相似文献   

5.
6.
7.
8.
9.
MicroRNAs (miRNAs) are approximately 21-nt RNAs that reduce target accumulation through mRNA cleavage or translational repression. Arabidopsis miR398 regulates mRNAs encoding two copper superoxide dismutase (CSD) enzymes and a cytochrome c oxidase subunit. miR398 itself is down-regulated in response to copper and stress. Here we show that miR398 is positively regulated by sucrose, resulting in decreased CSD1 and CSD2 mRNA and protein accumulation. This sucrose regulation is maintained both in the presence and absence of physiologically relevant levels of supplemental copper. Additionally, we show that plants expressing CSD1 and CSD2 mRNAs with altered miR398 complementarity sites display increased mRNA accumulation, whereas CSD1 and CSD2 protein accumulation remain sensitive to miR398 levels, suggesting that miR398 can act as a translational repressor when target site complementarity is reduced. These results reveal a novel miR398 regulatory mechanism and demonstrate that plant miRNA targets can resist miRNA regulation at the mRNA level while maintaining sensitivity at the level of protein accumulation. Our results suggest that even in plants, where miRNAs are thought to act primarily through target mRNA cleavage, monitoring target protein levels along with target mRNA levels is necessary to fully assess the consequences of disrupted miRNA-mRNA pairing. Moreover, the limited complementarity required to maintain robust miR398-directed repression of target protein accumulation suggests that similarly regulated endogenous plant miRNA targets may have eluded detection.  相似文献   

10.
Specific effects of microRNAs on the plant transcriptome   总被引:28,自引:0,他引:28  
  相似文献   

11.
12.
Plant microRNA: a small regulatory molecule with big impact   总被引:20,自引:0,他引:20  
  相似文献   

13.
MicroRNA biogenesis and function in plants   总被引:33,自引:0,他引:33  
Chen X 《FEBS letters》2005,579(26):5923-5931
  相似文献   

14.
Xie FL  Huang SQ  Guo K  Xiang AL  Zhu YY  Nie L  Yang ZM 《FEBS letters》2007,581(7):1464-1474
MicroRNAs (miRNAs) are a newly discovered class of non-protein-coding small RNAs with roughly 22 nucleotide-long. Increasing evidence has shown that miRNAs play multiple roles in biological processes, including development, cell proliferation and apoptosis and stress responses. In this research, several approaches were combined to make computational prediction of potential miRNAs and their targets in Brassica napus. We used previously known miRNAs from Arabidopsis, rice and other plant species against both expressed sequence tags (EST) and genomic survey sequence (GSS) databases to search for potential miRNAs in B. napus. A total of 21 potential miRNAs were detected following a range of strict filtering criteria. Using these potential miRNA sequences, we could further blast the mRNA database and found 67 potential targets in this species. According to the mRNA target information provided by NCBI (http://www.ncbi.nlm.nih.gov/), most of the target mRNAs appeared to be involved in plant growth, development and stress responses. To validate the prediction of miRNAs in B. napus, we performed a RT-PCR based assay of mature miRNA expression. Five miRNAs were identified in response to auxin, cadmium stress and phosphate starvation. So far, little is known about experimental or computational identification of miRNA in B. napus species. To improve efficiency for blast search, we developed an implementation (miRNAassist) that can identify homologs of miRNAs and their targets, with high sensitivity and specificity. The program is allowed to be run on Windows Operation System platform. miRNAassist is freely available if required.  相似文献   

15.
MicroRNAs(miRNAs) are endogenous non-coding small RNAs that silence genes through mRNA degradation or translational inhibition.The phytohormone abscisic acid(ABA) is essential for plant development and adaptation to abiotic and biotic stresses.In Arabidopsis,miRNAs are implicated in ABA functions.However,ABA-responsive miRNAs have not been systematically studied in rice.Here high throughput sequencing of small RNAs revealed that 107 miRNAs were differentially expressed in the rice ABA deficient mutant,Osabal.Of these,13 were confirmed by stem-loop RT-PCR.Among them,miR1425-5P,miR169 a,miR169n,miR390-5P,miR397 a and miR397 b were up-regulated,but miR162 b reduced in expression in Osabal.The targets of these 13 miRNAs were predicted and validated by gene expression profiling.Interestingly,the expression levels of these miRNAs and their targets were regulated by ABA.Cleavage sites were detected on 7 of the miRNA targets by 5'-Rapid Amplification of cDNA Ends(5'-RACE).Finally,miR162 b and its target OsTREl were shown to affect rice resistance to drought stress,suggesting that miR162 b increases resistance to drought by targeting OsTREl.Our work provides important information for further characterization and functional analysis of ABA-responsive miRNAs in rice.  相似文献   

16.
17.
New microRNAs from mouse and human   总被引:46,自引:1,他引:45       下载免费PDF全文
MicroRNAs (miRNAs) represent a new class of noncoding RNAs encoded in the genomes of plants, invertebrates, and vertebrates. MicroRNAs regulate translation and stability of target mRNAs based on (partial) sequence complementarity. Although the number of newly identified miRNAs is still increasing, target mRNAs of animal miRNAs remain to be identified. Here we describe 31 novel miRNAs that were identified by cloning from mouse tissues and the human Saos-2 cell line. Fifty-three percent of all known mouse and human miRNAs have homologs in Fugu rubripes (pufferfish) or Danio rerio (zebrafish), of which almost half also have a homolog in Caenorhabditis elegans or Drosophila melanogaster. Because of the recurring identification of already known miRNAs and the unavoidable background of ribosomal RNA breakdown products, it is believed that not many more miRNAs may be identified by cloning. A comprehensive collection of miRNAs is important for assisting bioinformatics target mRNA identification and comprehensive genome annotation.  相似文献   

18.
19.
Cloning and characterization of micro-RNAs from moss   总被引:16,自引:0,他引:16  
Micro-RNAs (miRNAs) are one class of endogenous tiny RNAs that play important regulatory roles in plant development and responses to external stimuli. To date, miRNAs have been cloned from higher plants such as Arabidopsis, rice and pumpkin, and there is limited information on their identity in lower plants including Bryophytes. Bryophytes are among the oldest groups of land plants among the earth's flora, and are important for our understanding of the transition to life on land. To identify miRNAs that might have played a role early in land plant evolution, we constructed a library of small RNAs from the juvenile gametophyte (protonema) of the moss Physcomitrella patens. Sequence analysis revealed five higher plant miRNA homologues, including three members of the miR319 family, previously shown to be involved in the regulation of leaf morphogenesis, and miR156, which has been suggested to regulate several members of the SQUAMOSA PROMOTER BINDING-LIKE (SPL) family in Arabidopsis. We have cloned PpSBP3, a moss SPL homologue that contains an miR156 complementary site, and demonstrated that its mRNA is cleaved within that site suggesting that it is an miR156 target in moss. Six additional candidate moss miRNAs were identified and shown to be expressed in the gametophyte, some of which were developmentally regulated or upregulated by auxin. Our observations suggest that miRNAs play important regulatory roles in mosses.  相似文献   

20.
MicroRNA (miRNA) 是一类调控基因转录后表达的非编码的小分子RNA.它在生物的发育、细胞增殖、凋亡以及胁迫响应等生物过程中发挥着重要的调控作用.目前,分离和鉴定miRNA的方法主要包括实验方法(遗传筛选、直接克隆)和生物信息学方法.MiRNA存在表达丰度低,表达组织特异性,以及受特殊诱导等问题,用传统的实验法常难发现和鉴定miRNA.通过生物信息学方法在已有的各种基因库中寻找未知miRNA,大大提高了人们发现miRNA及其靶基因的效率.芸苔属(Brassica)的成员包括油菜、芜青、甘蓝等,是世界各国主要油料和食用作物.目前,油菜的miRNA的分离和鉴定工作已有文献报道,而其它的尚属空白.本文将拟南芥、水稻等植物已知的miRNA分别与芜青、甘蓝、野芥菜、黑芥菜、埃塞俄比亚芥的GSS和EST数据库进行比对搜索,采用一系列标准进行筛选,最后分别在芜青和甘蓝中预测到67个和95个miRNA.再把这些预测得到的miRNA分别与芜青和甘蓝的mRNA数据库进行比对搜索,分别找到120个和111个靶基因,除去未知功能及功能不详的,各有62个和48个靶基因.分析结果表明,上述大多数靶基因编码的产物为转录因子及重要代谢酶类,涉及植物的生长发育调控,信号转导及胁迫响应等方面.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号