首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Two metathoracic flight motoneurons of the locustChortoicetes terminifera have been stained by injection of cobalt. The motoneurons innervate the tergosternal (hindwing elevator) muscle 113 and the first basalar (hindwing depressor) muscle 127. The somata of both are on the ventral surface of the ganglion (Fig. 1), and their axons in the ipsilateral nerve 3A. The main neuropilar segment and large medial dendrites of each follow parallel courses through the ganglion even though the two motoneurons subserve antagonistic functions (Fig. 3). Differences in the smaller dendrites add characteristic detail to each. The dendritic trees are complex and cover virtually all of the ipsilateral dorsal neuropile. No branches cross the mid-line so that electrotonic coupling is eliminated as a possible means of co-ordination of motoneurons of the two sides (Fig. 4). The general shape of the motoneurons is similar in different animals but there is variation in the number and extent of the small dendrites (Fig. 6).Beit Memorial Research Fellow.  相似文献   

2.
In the stick insect Carausius morosus identified nonspiking interneurons (type E4) were investigated in the mesothoracic ganglion during intraand intersegmental reflexes and during searching and walking.In the standing and in the actively moving animal interneurons of type E4 drive the excitatory extensor tibiae motoneurons, up to four excitatory protractor coxae motoneurons, and the common inhibitor 1 motoneuron (Figs. 1–4).In the standing animal a depolarization of this type of interneuron is induced by tactile stimuli to the tarsi of the ipsilateral front, middle and hind legs (Fig. 5). This response precedes and accompanies the observed activation of the affected middle leg motoneurons. The same is true when compensatory leg placement reflexes are elicited by tactile stimuli given to the tarsi of the legs (Fig. 6).During forward walking the membrane potential of interneurons of type E4 is strongly modulated in the step-cycle (Figs.8–10). The peak depolarization occurs at the transition from stance to swing. The oscillations in membrane potential are correlated with the activity profile of the extensor motoneurons and the common inhibitor 1 (Fig. 9).The described properties of interneuron type E4 in the actively behaving animal show that these interneurons are involved in the organization and coordination of the motor output of the proximal leg joints during reflex movements and during walking.Abbreviations CLP reflex, compensatory leg placement reflex - CI1 common inhibitor I motoneuron - fCO femoral chordotonal organ - FETi fast extensor tibiae motoneuron - FT femur-tibia - SETi slow extensor tibiae motoneuron  相似文献   

3.
Asphyxiation of the spinal cord for periods of 2-4 min leads to block of the monosynaptic pathway. At about the same time this blockage takes place, the afferent action potentials fail to invade the presynaptic terminals. Asphyxiation also interferes with the antidromic invasion of motoneurons, and the failure of the antidromic action potentials to invade the motoneuron dendrites coincides with the time of the disappearance of the orthodromic monosynaptic responses. During reoxygenation, both the presynaptic terminals and the dendrites recover their function, or rather their polarization, in a few seconds and yet synaptic transmission reappears only after several minutes. It is postulated that failure of synaptic transmission during asphyxia is due to depolarization of both the presynaptic terminals and the dendrites of the postsynaptic elements. However, repolarization of these elements during reoxygenation, is not sufficient to reestablish synaptic transmission, but recovery of some unidentified biochemical process is apparently necessary.  相似文献   

4.
Asphyxiation of the spinal cord for periods of 2–4 min leads to block of the monosynaptic pathway. At about the same time this blockage takes place, the afferent action potentials fail to invade the presynaptic terminals. Asphyxiation also interferes with the antidromic invasion of motoneurons, and the failure of the antidromic action potentials to invade the motoneuron dendrites coincides with the time of the disappearance of the orthodromic monosynaptic responses. During reoxygenation, both the presynaptic terminals and the dendrites recover their function, or rather their polarization, in a few seconds and yet synaptic transmission reappears only after several minutes. It is postulated that failure of synaptic transmission during asphyxia is due to depolarization of both the presynaptic terminals and the dendrites of the postsynaptic elements. However, repolarization of these elements during reoxygenation, is not sufficient to reestablish synaptic transmission, but recovery of some unidentified biochemical process is apparently necessary.  相似文献   

5.
Summary One foreleg was amputated at mid-femur in adultGryllus bimaculatus females. In phonotaxis tests these monaural crickets show course deviations and circling towards the intact side (Fig. 1). Mean course stability is best at 60 and 70 dB (Fig. 2). Here it differs significantly from a threshold value for orientated walking in females operated on the day of adult moult, but not in those operated two weeks later. The orientational performance improves with the interval between amputation and test (Fig. 3).Centripetal cobalt backfills reveal degeneration of tympanal nerve fibers on the amputated side (Fig. 4B, C). The mean number of intact afferents crossing the midline of the prothoracic ganglion is increased in monaural versus binaural crickets. Maximum transmidline extension is not correlated with the period of deafferentation (Fig. 5).Intracellular recording and staining of prothoracic auditory interneurons shows some axonal sprouts in ON1i (intact side) and ON2, but no significant physiological changes (Figs. 6A, D; 8A, C, E, G). Apart from axonal sprouts ON1a (amputated side) may show a few dendritic sprouts into the intact auditory neuropil (Figs. 6C, 7). Excitation in some ON1a-cells reveals functional contacts to intact auditory afferents (via crossing dendrites or possibly crossing afferents, Figs. 6e, 7, 8F). Morphological and associated physiological changes start early in AN2a (amputated side). The degree of crossing dendrites and contralateral excitation increases with postoperative age (Figs. 8H, 9).  相似文献   

6.
The mechanosensitivity of eel (Anguilla anguilla) neuromasts was measured by the impulse responses of single afferent nerve fibers to mechanical stimuli. It is dependent on the potential across the skin and on the ions in the water outside the apical membrane of the sensory cells. The mechanosensitivity decreases to zero when the skin is polarized by 10-100 mV cathodal DC (skin surface negative); it increases with increasing (10-60 mV) anodal DC and remains remarkably constant with higher polarization (Fig. 1). The mechanosensitivity increases with increasing concentrations of Ca++ outside the apical membrane of the sensory cells. Na+ and K+ have no influence. Addition of La , Co++, Mg++, D 600 and A-QA 39 inhibits the mechanosensitivity; the degree of inhibition varies with the inhibitor and the ratio [Ca++]/[inhibitor], indicating that the inhibition is competitive (Figs. 2, 3). We conclude that the apical membrane is specifically permeable to Ca++ ('late Ca channel') and that the inward receptor current through the apical membrane is carried by Ca++. Streptomycin also inhibits mechanosensitivity by competing with Ca++. With streptomycin, however, anodal polarization reduces, rather than increases, the mechanosensitivity (Fig. 4).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Summary In locusts (Locusta migratoria) walking on a treadwheel, afferents of tarsal hair sensilla were stimulated via chronically implanted hook electrodes (Fig. 1). Stimuli applied to the middle leg tarsus elicited avoidance reflexes (Fig. 2). In quiescent animals, the leg was lifted off the ground and the femur adducted. In walking locusts, the response was phase-dependent. During the stance phase, no reaction was observed except occasional, premature triggering of swing movements; stimuli applied near the end of the swing phase were able to elicit an additional, short leg protraction.Central nervous correlates of phase-dependent reflex modulation were observed by recording intracellularly from motoneuron somata in walking animals. As a rule, motoneurons recruited during the swing phase showed excitatory stimulus-related responses around the end of the swing movement, correlated to the triggering of additional leg protractions (Figs. 3, 4, 5). Motoneurons active during the stance phase were often inhibited by tarsal stimulation, some showed only weak responses (Figs. 8, 9, 10). Common inhibitory motoneuron 1 was excited by tarsal stimulation during all phases of the leg movement (Figs. 6, 7). In one type of flexor tibiae motoneuron, a complex response pattern was observed, involving the inversion of stimulus-related synaptic potentials from excitatory, recorded during rest, to inhibitory, observed during long-lasting stance phases (Figs. 11, 12).The results demonstrate how reflex modulation is represented on the level of synaptic input to motoneurons. They further suggest independent gain control in parallel, antagonistic pathways converging onto the same motoneuron as a mechanism for reflex reversal during locomotion.Abbreviations CI 1 common inhibitory motoneuron (1) - EMG electromyogram - Feti fast extensor muscle of the tibia  相似文献   

8.
The mechanisms of nerve conduction block induced by direct current (DC) were investigated using a lumped circuit model of the myelinated axon based on Frankenhaeuser–Huxley (FH) model. Four types of nerve conduction block were observed including anodal DC block, cathodal DC block, virtual anodal DC block, and virtual cathodal DC block. The concept of activating function was used to explain the blocking locations and relation between these different types of nerve block. Anodal/cathodal DC blocks occurred at the axonal nodes under the block electrode, while virtual anodal/cathodal DC blocks occurred at the nodes several millimeters away from the block electrode. Anodal or virtual anodal DC block was caused by hyperpolarization of the axon membrane resulting in the failure of activating sodium channels by the arriving action potential. Cathodal or virtual cathodal DC block was caused by depolarization of the axon membrane resulting in inactivation of the sodium channel. The threshold of cathodal DC block was lower than anodal DC block in most conditions. The threshold of virtual anodal/cathodal blocks was about three to five times higher than the threshold of anodal/cathodal blocks. The blocking threshold was decreased with an increase of axonal diameter, a decrease of electrode distance to axon, or an increase of temperature. This simulation study, which revealed four possible mechanisms of nerve conduction block in myelinated axons induced by DC current, can guide future animal experiments as well as optimize the design of electrodes to block nerve conduction in neuroprosthetic applications.  相似文献   

9.
Summary A new training and testing paradigm for walking sheep blowflies, Lucilia cuprina, is described. A fly is trained by presenting it with a droplet of sugar solution on a patch of coloured paper. After having consumed the sugar droplet, the fly starts a systematic search. While searching, it is confronted with an array of colour marks consisting of four colours displayed on the test cardboard (Fig. 1). Colours used for training and test include blue, green, yellow, orange, red, white and black.Before training, naive flies are tested for their spontaneous colour preferences on the test array. Yellow is visited most frequently, green least frequently (Table 2). Spontaneous colour preferences do not simply depend on subjective brightness (Table 1).The flies trained to one of the colours prefer this colour significantly (Figs. 5 and 9–11). This behaviour reflects true learning rather than sensitisation (Figs. 6–7). The blue and yellow marks are learned easily and discriminated well (Figs. 5, 9, 11). White is also discriminated well, although the response frequencies are lower than to blue and yellow (Fig. 11). Green is discriminated from blue but weakly from yellow and orange (Figs. 5, 9, 10). Red is a stimulus as weak as black (Figs. 8, 9). These features of colour discrimination reflect the spectral loci of colours in the colour triangle (Fig. 14).The coloured papers seem to be discriminated mainly by the hue of colours (Fig. 12), but brightness may also be used to discriminate colour stimuli (Fig. 13).  相似文献   

10.
An analysis has been made of the electrical responses recorded on the surface and within the substance of the first sacral spinal segment when the contained motoneurons are excited by single and repeated antidromic ventral root volleys. A succession of negative deflections, designated in order of increasing latency m, i, b, d, has been found. Each of those deflections possesses some physiological property or properties to distinguish it from the remainder. Indicated by that fact is the conclusion that the successive deflections represent impulse conduction through successive parts of the motoneurons that differ in behavior, each from the others. Since the spinal cord constitutes a volume conductor the negative deflections are anteceded by a positive deflection at all points except that at which the axonal impulses first enter from the ventral root into the spinal cord. Frequently two or more negative deflections are recorded together in overlapping sequence, but for each deflection a region can be found in which the onset of that deflection marks the transition from prodromal positivity to negativity. Deflection m is characteristic of axonal spikes. Latent period is in keeping with known axonal conduction velocity. Refractory period is brief. The response represented by m is highly resistant to asphyxia. Maximal along the line of ventral root attachment and attenuating sharply therefrom, deflection m can be attributed only to axonal impulse conduction. Deflection i is encountered only within the cord, and is always associated with a deflection b. The i,b complex is recordable at loci immediately dorsal to regions from which m is recorded, and immediately ventral to points from which b is recorded in isolation from i. Except for its great sensitivity to asphyxia, deflection i has properties in common with those of m, but very different from those of b or d. To judge by properties i represents continuing axonal impulse conduction into a region, however, that is readily depolarized by asphyxia. Deflection b possesses a unique configuration in that the ascending limb is sloped progressively to the right indicating a sharp decrease in velocity of the antidromic impulses penetrating the b segment. A second antidromic volley will not conduct from i segment to b segment of the motoneurons unless separated from the first by nearly 1 msec. longer than is necessary for restimulation of axons. This value accords with somatic refractoriness determined by other means. Together with spatial considerations, the fact suggests that b represents antidromic invasion of cell bodies. Deflection d is ubiquitous, but in recordings from regions dorsal and lateral to the ventral horn, wherein an electrode is close to dendrites, but remote from other segments of motoneurons, d is the initial negative deflection. In latency d is variable to a degree that demands that it represent slow conduction through rather elongated structures. When associated with deflection b, deflection d may arise from the peak of b with the only notable discontinuity provided by the characteristically sloped rising phase of b. Deflection d records the occupation by antidromic impulses of the dendrites. Once dendrites have conducted a volley they will not again do so fully for some 120 msec. Embracing the several deflections, recorded impulse negativity in the motoneurons may endure for nearly 5 msec. When the axonal deflection m is recorded with minimal interference from somatic currents, it is followed by a reversal of sign to positivity that endures as long as impulse negativity can be traced elsewhere, demonstrating the existence of current flow from axons to somata as the latter are occupied by impulses. Note is taken of the fact that impulse conduction through motoneurons is followed by an interval, measurable to some 120 msec., during which after-currents flow. These currents denote the existence in parts of the intramedullary motoneurons of after-potentials the courses of which must differ in different parts of the neurons, otherwise nothing would be recorded. The location of sources and sinks is such as to indicate that a major fraction of the current flows between axons and somata. For approximately 45 msec. the direction of flow is from dendrites to axons. Thereafter, and for the remaining measurable duration, flow is from axons to dendrites.  相似文献   

11.
A study has been made of conditions that support monosynaptic reflex transmission from afferent fibers of one part of a synergic muscle mass to motoneurons of another part. Heteronymous response so called can be brought on by prior tetanization of the afferent pathway and by asphyxiation to a critical stage. The response is facilitated by cooling and may appear in the cold preparation without need for prior tetanization. By appropriate asymmetrical subdivision of a monosynaptic reflex system an afferent inflow can be obtained that is sufficiently powerful to secure heteronymous transmission without the need for prior tetanization or cooling. Each junction between a monosynaptic afferent fiber and a motoneuron possesses some degree of potentiality for transmitting. Transmitter potentiality of an afferent fiber at its several junctions with motoneurons varies widely. Reasons are advanced for supposing the variation to be graded rather than stepwise, and quantitative rather than qualitative.  相似文献   

12.
Summary Two morphological types of interneurones were found in the brainof Alloeoplana californica (Figs. 1, 2). Both respond to water vibration and to light offset (Fig. 3). These responses are blocked by Mg++ or Cd++ (Fig. 4), and habituate to repetitive stimuli (Figs. 6, 10). Even when the light response is habituated, light offset will dishabituate the vibration response (Figs. 7, 10); no other regime tested produced dishabituation of either response. These neurones receive higher-order sensory input, and make subthreshold excitatory synapses on motor pathways; intracellular tetraethylammonium lengthens the time course of the spikes (Fig. 5), and each such spike elicits a contraction in the anterior margin of the animal. We believe that they form part of the neuronal circuitry underlying arousal.Abbreviation TEA tetraethylammonium  相似文献   

13.
Summary Intracellular recordings were made in the medullae of intact, restrained females ofCalliphora vicina that faced a hemispherical, minimum-distortion surface upon which moving patterns and spots were projected from the rear (Fig. 2). In the distal medulla, noisy hyperpolarizations to light, most likely recorded in terminals of laminar (L) cells, had flicker-like oscillations to moving gratings of 15° spatial wavelength but not of 2.5° spatial wavelength (Fig. 3). Medullary (M) cells penetrated distally responded to grating movements with similar but depolarizing oscillations, in one cell 180° out of phase with a nearby laminar response (Figs. 4–6).A characteristic movement response recorded from most medullary cells consisted of abrupt, maintained nondirectional depolarizations in response to movements of gratings, often with directional ripple or spikes superimposed. When directions of movement reversed, there were brief repolarizations, but when movements stopped, depolarizations decayed away more slowly (Figs. 7 and 8). Magnitude of responses increased with increasing speeds of both 15° and 2.5° gratings (Figs. 9–11). In some cells, there were delayed decays of responses after stopping (Fig. 12). Still other cells seemed to receive inhibition from other, characteristically responding cells (Fig. 13).Receptive fields tested were simple and usually large, with only a suggestion of surround inhibition (Fig. 14). In general, intensity and position were interchangeable over a cell's receptive field (Figs. 15 and 16). Moving edges and dark spots elicited responses primarily within receptive field centers (Figs. 18–20).It is argued that waveforms of characteristic movement responses can be explained by multiplicative inputs from L- and M-cells to movement detectors (Figs. 21–26).Abbreviations L cells laminar (monopolar) cells - M cells medullary cells  相似文献   

14.
The medicinal leech crawls along a solid substrate by repeated alternating extensions and shortenings of the body. Extension occurs with the posterior sucker attached and the head sucker free. The head sucker then attaches, followed by shortening and release of the tail sucker. The tail sucker is then pulled toward the head, where it reattaches to the substrate. The head sucker then releases, and another crawling cycle begins (Figs. 1, 5). There are two crawling variants: inchworm crawling, in which the head and tail suckers are closely apposed at the end of a cycle and the body forms a loop above the substrate, and vermiform crawling, in which the suckers are placed farther apart and the body remains fairly close to the substrate (Fig. 1). The cycle period and the distance traveled during a cycle are greater in inchworm than in vermiform crawling; however, the velocity of travel is the same for both (Fig. 2). For both variants, the interval between head sucker attachment and tail sucker release is similar at all cycle periods and has a value consistent with direct interneuronal conduction of a signal from head sucker sensory neurons to tail sucker motor neurons. The interval between tail sucker attachment and head sucker release, however, is longer and varies with the cycle period, suggesting a more complex interneuronal circuit in the pathway from tail sucker sensory neurons to head sucker motor neurons (Fig. 4). The onsets of the components of the crawling cycle (extension, post-extension pause, shortening, and post-shortening pause) show an anteroposterior lag (Figs. 5, 7). For both variants, the travel time between segments varies directly with the period (Fig. 8). For both crawl types, the durations of the cycle components vary directly with the period, with several exceptions (Figs. 9, 10). A model is presented that summarizes the coordination of the various motor events in a cycle of leech crawling (Figs. 11 and 12).  相似文献   

15.
Summary The activity of auditory receptor cells and prothoracic auditory neurons of the cricket,Gryllus bimaculatus, was recorded intracellularly while the animal walked on a sphere or while passive movement was imposed on a foreleg.During walking the responses to simulated calling song is altered since (i) the auditory sensory cells and interneurons discharged impulses in the absence of sound stimuli (Figs. 1, 3) and (ii) the number of action potentials in response to sound is reduced in interneurons (Figs. 2, 3).These two effects occurred in different phases of the leg movement during walking and therefore masked, suppressed or did not affect the responses to auditory stimuli (Figs. 3, 4). Hence there is a time window within which the calling song can be detected during walking (Fig. 5).The extra excitation of receptors and interneurons is probably produced by vibration of the tympanum because (i) the excitation occurred at the same time as the leg placement (Fig. 4), (ii) during walking on only middle and hindlegs, no extra action potentials were observed (Fig. 6), (iii) in certain phases of passive movements receptor cells and interneurons were excited as long as the ipsilateral ear was not blocked (Figs. 8, 9).Suppression of auditory responses seems to be peripheral as well as central in origin because (i) it occurred at particular phases during active and passive leg movements in receptor cells and interneurons (Figs. 1, 4, 9), (ii) it disappeared if the ear was blocked during passive leg movements (Fig. 9) and (iii) it persisted if the animal walked only on the middle and hind legs (Fig. 6).  相似文献   

16.
Summary The paired lanterns of the larval fireflyPhoturis versicolor are bilaterally innervated by four dorsal unpaired median (DUM) neurons the somata of which are found in the terminal abdominal ganglion (A8) and which stain with Neutral Red (Fig. 1A). Both intra- and extracellularly recorded activity in these neurons is always associated with a bilateral glow response, or BGR (Figs. 3 and 4). Luminescence cannot be initiated or maintained in the absence of DUM neuron excitation. Furthermore, there is a linear causative relationship between the frequency of DUM neuron activity and the amplitude of the resultant BGR (Figs. 6 and 7).Due to the intrinsic bilateral morphology, firefly DUM neurons may be antidromically activated through either lantern nerve, resulting in the initiation of luminescence in the contralateral lantern (Figs. 8 and 9). This activation is unaffected by high Mg++ saline indicating that the DUM neurons provide a direct pathway for conduction through the ganglion (Fig. 9). The DUM neurons receive synaptic input from axons descending through both anterior connectives, however, stimulation of only one connective results in a BGR since excitation is carried to both sides of the periphery through the bilateral axons.Firefly DUM neurons exhibit physiological qualities typical of neurosecretory cells: spikes are characterized by a slow time course and a long and deep afterhyperpolarization (Fig. 10). This is consistent with the observation that spontaneous firing rates are usually below 3 Hz, but nevertheless elicit a strong BGR (Figs. 3 and 5). The physiological evidence presented in this study correlates well with the morphological, pharmacological and biochemical evidence compiled from previous studies, which indicates that the four DUM neurons represent the sole photomotor output from the central nervous system to the larval lanterns. Evidence is discussed which indicates that these effects are mediated throught the release of octopamine, long presumed to be the lantern neurotransmitter. These results, therefore, describe a novel and unexpected role for DUM neurons in regulating an unusual invertebrate effector tissue and further expands the growing list of functions for octopamine in neural control mechanisms.Abbreviations A1-A7 first through seventh abdominal ganglia - A8 terminal abdominal ganglion - DUM dorsal unpaired median - BGR bilateral glow response  相似文献   

17.
Summary Extracellular stimulation over the dorsal funiculus in the spinal cord of lampreys was found to selectively activate prolonged episodes of fictive arousal respiration (Figs. 1, 3). The induced episodes showed comparable increases in cycle frequency and motoneuron burst duration to the spontaneous arousal pattern observed in isolated brain preparations (Fig. 2). Intracellular stimulation of primary sensory neurons with axons in the dorsal funiculus, called dorsal cells, also elicited the arousal pattern (Fig. 4). Mechanoreceptive dorsal cells respond to cutaneous stimulation. When mechanical stimuli were applied to the skin of intact lampreys (Fig. 6) or to lampreys with ipsilateral vagotomy, arousal respiration was induced (Figs. 7, 8). Bilateral, but not unilateral, trigeminal lesion blocked dorsal cell induction of the arousal response (Fig. 5). Spontaneous arousal respiration was recorded from intact, unrestrained lampreys (Fig. 9). These results suggest that fictive arousal respiration is the in vitro correlate of natural arousal respiration in lampreys, and that one mechanism leading to arousal respiration may be the activity of sensory dorsal cells. A model for respiratory motor pattern switching in lamprey is proposed. The model suggests that the normal and arousal patterns are produced by separately engaging rostral or caudal pattern generators in the medulla, rather than by modifying one pattern generator (Fig. 10).  相似文献   

18.
Summary Directionality and intensity dependence of antennal sweeps elicited by water jet stimulation of the tailfan in tethered, reversibly blinded adult and juvenile crayfish (Procambarus clarkii) were analyzed.Resting crayfish keep their antennae at about 50° symmetrically to the longitudinal body axis (Figs. 2 bottom, and 3).In adults, tailfan stimulation elicits synchronous backward sweeps of both antennae, which increase for more caudal stimulus directions (Figs. 2–4 and 5A). Directions differing by 30°–60° are significantly distinguished (Fig. 4). The mean sweep of the ipsilateral antenna significantly overrides that of the contralateral antenna for rostrolateral stimulation at 40–200 mm/s stimulus velocity and lateral to caudolateral stimulation at 40 mm/s and thus lateralization of the stimulus is revealed (Figs. 2 top, 4 and 5A). Mean antennal sweeps at a given stimulus direction and distance increase with increasing stimulus velocity (40–250 mm/s, Fig. 5A).In juveniles, the directional dependence of antennal sweeps is reduced compared to that of adults, while a similar intensity dependence is found (Fig. 5B).The pronounced directionality of the antennal response in adult crayfish vanishes and response latencies increase after reversibly covering the tailfan with a small bag or the telson with waterproof paste (Figs. 6 and 7). Thus, tailfan and especially telson mechanoreceptors play an important role in the localization of water movements elicited by predators or prey behind the crayfish.  相似文献   

19.
Summary Intracellular recordings were made from the soma of the metathoracic common inhibitory neuron of the locustsSchistocerca andChortoicetes. The soma is passively invaded by a spike of 2–5 mV in amplitude. The response of the common inhibitor to a variety of different inputs was studied. Tests for coupling between the common inhibitory and excitatory motoneurons to the same or antagonistic muscles were made by simultaneous recordings from pairs of neuron somata. No low resistance or synaptically mediated coupling was found. The somata of the two common inhibitory neurons which supply muscles on opposite sides of the body lie together on the ventral surface of the ganglion on the mid-line (Fig. 6). They are not coupled in any way. Cobalt chloride injected into the common inhibitor has shown it to have an extensive and complex dendritic tree confined to the ipsilateral half of the ganglion (Fig. 8). A single branch extends into the mesothoracic ganglion. There are differences in the branching patterns of the dendrites in different animals (Fig. 10).Beit Memorial Research Fellow.  相似文献   

20.
Intracellular recordings have been made of responses to step, ramp and sinusoidal changes of light by second-order L-neurones and a third-order neurone, DNI, of locust (Locusta migratoria) ocelli.
1.  The membrane potential at the peak response by an L-neurone to a change in light is proportional to the light increment or decrement, independent of background, over a range of at least 4 log units. As background increases, response latency and time-course decrease, and responses become more phasic (Fig. 1).
2.  Adaptation to a changed mean light level involves a change in sensitivity and a slow change in resting membrane potential, which never adapts completely to dark resting potential in the presence of light (Fig. 3).
3.  L-neurones can follow changes in light which last several seconds, but responses to fast changes are enhanced in amplitude (Figs. 4, 5). An increase in background light causes an increase in the frequency of sinusoidally modulated light at which the largest response occurs (Fig. 4).
4.  The responses of DNI to increased light saturate at lower intensities than those of L-neurones. During adaptation to different background light intensities, there is no change in the input-output relation of the synapse between an L-neurone and DNI (Figs. 6, 7).
5.  For a rapid decrease in light, DNI produces a rebound spike, followed by a period of silence (Figs. 5, 8).
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号