首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A large, heterogeneous, highly expressed gene family encoding oleosin-like proteins is described in the Brassicaceae. íeven related cDNA sequences were isolated from Brassica napus anther mRNA using RACE-PCR and compared with other recently described anther-specific oleosin-like genes from B. napus. The expression patterns of four representative members of this diverse gene family were analyzed by Northern blotting and in situ hybridization. In all cases, the genes were expressed specifically in the tapetum of 3–5 mm B. napus buds, which contained microspores at the late-vacuolate and bicellular stages of development. The predicted protein products are ordered into subclasses, each of which has a characteristic C-terminal domain, containing different amino acid motifs or repeated residues. Tryphine (pollen coat) fractions from mature B. napus pollen were found to be particularly enriched in polypeptides of apparent molecular weights 32–38 kDa, plus numerous less abundant polypeptides of less than 15 kDa. The N-terminal 15–20 residues of three of these polypeptides (12, 32 and 38 kDa) were found by microsequencing to be identical to parts of the predicted amino acid sequences of three of the tapetal-expressed oleosin-like genes. This indicates the possibility of post-translational modification of these proteins resulting in a cleavage of the primary translation products in order to generate the mature tryphine polypeptides. These data imply that a large and diverse group of oleosin-like proteins is synthesized in the tapeturn of B. napus anthers and that following tapetal degradation, these proteins, possibly in modified form, then relocate to the developing microspores where they eventually constitute some of the major components of the extracellular tryphine of mature pollen grains. These proteins share a conserved 70 amino acid residue hydrophobic domain and are related structurally to the seed-specific intracellular oleosins, although their biological function may be different.  相似文献   

2.
To examine the site of expression of the tomato anther-specific gene, LAT52, in the developing male gametophyte, the LAT52 gene promoter was fused to a nuclear-targeted version of the β-glucuronidase (GUS) gene and introduced into tobacco. Transformed plants expressing GUS activity showed nuclear localization of the GUS reaction product to the vegetative cell of the pollen grain. No staining or localization was detected in the generative cell, at pollen maturation or during pollen tube growth in vitro. These results clearly demonstrate differential gene expression within the male gametophyte, and highlight regulatory events which determine the differing fates of the vegetative and generative cells following microspore mitosis.  相似文献   

3.
Functional genomic studies of many polyploid crops, including rapeseed (Brassica napus), are constrained by limited tool sets. Here we report development of a gain‐of‐function platform, termed ‘iFOX (inducible Full‐length cDNA OvereXpressor gene)‐Hunting’, for inducible expression of B. napus seed cDNAs in Arabidopsis. A Gateway‐compatible plant gene expression vector containing a methoxyfenozide‐inducible constitutive promoter for transgene expression was developed. This vector was used for cloning of random cDNAs from developing B. napus seeds and subsequent Agrobacterium‐mediated transformation of Arabidopsis. The inducible promoter of this vector enabled identification of genes upon induction that are otherwise lethal when constitutively overexpressed and to control developmental timing of transgene expression. Evaluation of a subset of the resulting ~6000 Arabidopsis transformants revealed a high percentage of lines with full‐length B. napus transgene insertions. Upon induction, numerous iFOX lines with visible phenotypes were identified, including one that displayed early leaf senescence. Phenotypic analysis of this line (rsl‐1327) after methoxyfenozide induction indicated high degree of leaf chlorosis. The integrated B. napuscDNA was identified as a homolog of an Arabidopsis acyl‐CoA binding protein (ACBP) gene designated BnACBP1‐like. The early senescence phenotype conferred by BnACBP1‐like was confirmed by constitutive expression of this gene in Arabidopsis and B. napus. Use of the inducible promoter in the iFOX line coupled with RNA‐Seq analyses allowed mechanistic clues and a working model for the phenotype associated with BnACBP1‐like expression. Our results demonstrate the utility of iFOX‐Hunting as a tool for gene discovery and functional characterization of Brassica napus genome.  相似文献   

4.
A tapetum-specific gene, RTS, has been isolated by differential screening of a cDNA library from rice panicles. RTS is a unique gene in the rice genome. RNA blot analysis and in situ hybridization indicates that this gene is predominantly expressed in the anther’s tapetum during meiosis and disappears before anthesis. RTS has no introns and encodes a putative polypeptide of 94 amino acids with a hydrophobic N-terminal region. The nucleotide and deduced amino acid sequence of the gene do not show significant homology to any known sequences. However, a sequence in the promoter region, GAATTTGTTA, differs only by one or two nucleotides from one of the conserved motifs in the promoter region of two pollen-specific genes of tomato. Several other sequence motifs found in other anther-specific promoters were also identified in the promoter of the RTS gene. Transgenic and antisense RNA approaches revealed that RTS gene is required for male fertility in rice. The promoter region of RTS, when fused to the Bacillus amyloliquefaciens ribonuclease gene, barnase, or the antisense of the RTS gene, is able to drive tissue-specific expression of both genes in rice, creeping bentgrass (Agrostis stolonifera L.) and Arabidopsis, conferring male sterility to the transgenic plants. Light and near-infrared confocal microscopy of cross-sections through developing flowers of male-sterile transgenics shows that tissue-specific expression of barnase or the antisense RTS genes interrupts tapetal development, resulting in deformed non-viable pollen. These results demonstrate a critical role of the RTS gene in pollen development in rice and the versatile application of the RTS gene promoter in directing anther-specific gene expression in both monocotyledonous and dicotyledonous plants, pointing to a potential for exploiting this gene and its promoter for engineering male sterility for hybrid production of various plant species. Data deposition: The sequence reported in this paper have been deposited in the GeneBank database (Accession No. U12171)  相似文献   

5.
PsEND1 is a pea anther-specific gene that displays very early expression in the anther primordium cells. Later on, PsEND1 expression becomes restricted to the epidermis, connective, endothecium and middle layer, but it is never observed in tapetal cells or microsporocytes. We fused the PsEND1 promoter region to the cytotoxic barnase gene to induce specific ablation of the cell layers where the PsEND1 is expressed and consequently to produce male-sterile plants. Expression of the chimaeric PsEND1::barnase gene in two Solanaceae (Nicotiana tabacum and Solanum lycopersicon) and two Brassicaceae (Arabidopsis thaliana and Brassica napus) species, impairs anther development from very early stages and produces complete male-sterile plants. The PsEND1::barnase gene is quite different to other chimaeric genes previously used in similar approaches to obtain male-sterile plants. The novelty resides in the use of the PsEND1 promoter, instead of a tapetum-specific promoter, to produce the ablation of specific cell lines during the first steps of the anther development. This chimaeric construct arrests the microsporogenesis before differentiation of the microspore mother cells and no viable pollen grains are produced. This strategy represents an excellent alternative to generate genetically engineered male-sterile plants, which have proved useful in breeding programmes for the production of hybrid seeds. The PsEND1 promoter also has high potential to prevent undesirable horizontal gene flow in many plant species.  相似文献   

6.
Male sterility is of special interest as a mechanism allowing hybrid breeding, especially in important crops such as rapeseed (Brassica napus). Male sterile plants are also suggested to be used as a biological safety method to prevent the spread of transgenes, a risk that is high in the case of rapeseed due to the mode of pollination, out-crossing by wind or insects, and the presence of related, cross-pollinating species in the surrounding ecosystem in Europe. Different natural occurring male sterilities and alloplasmic forms have been tried to be used in rapeseed with more or less success. Due to the difficulties and limitations with these systems, we present a biotechnological alternative: a metabolically engineered male sterility caused by interference with anther-specific cell wall-bound invertase. This is an essential enzyme for carbohydrate supply of the symplastically isolated pollen. The activity of this enzyme is reduced either by antisense interference or by expressing an invertase inhibitor under control of the anther-specific promoter of the invertase with the consequence of a strong decrease of pollen germination ability.  相似文献   

7.
The effects on anther development of a fusion of the Arabidopsis anther-specific apg gene promoter to a ribonuclease (barnase) in transgenic tobacco plants were examined. Contrary to expectations, viable pollen grains were produced by these plants despite the demonstration that ribonuclease expression in the microspores and tapetum caused targeted cell ablation. Transformed plants were reduced in male fertility due to ablation of a proportion of pollen dependent on apg-barnase locus number. Plants were otherwise phenotypically normal and fully female fertile, confirming the anther-specific nature of the apg promoter. In microspores inheriting an apg-barnase locus following meiosis, loss of cell viability, as judged by fluorescein diacetate staining, occurred during mid to late microspore development. Microspores not inheriting a transgene went on to mature into viable pollen grains. Premature degeneration of the tapetum was also observed as a result of apg-barnase expression, but this did not appear to disrupt the subsequent microspore and pollen developmental programmes. This was substantiated by observations of microspore development in plants in which the tapetum was rescued from ablation by crossing in a second transgene encoding a tapetum-specific inhibitor of the ribonuclease. It was determined that tapetum cell disruption occurs at the early to mid uninucleate microspore stage in apg-barnase transformants. The data presented show that after this point in microspore development the tapetum is no longer essential for the production of viable pollen in tobacco.  相似文献   

8.
Abiotic stress, such as extreme temperature, drought, or excessive salinity, is one of the leading causes of crop loss worldwide. Microspore-derived (MD) cell suspension cultures of Brassica napus L. cv. Jet Neuf have been shown to be a useful system for studying the biochemistry of developing oilseeds. In the present study, we describe the application of MD cell suspension cultures of B. napus as a system for studying gene expression in response to abiotic stress, and demonstrate emybryogenic competence in cultures that have been continuously subcultured for more than 20 years. MD cell suspension cultures of B. napus L. cv Jet Neuf were exposed to low temperature or osmotic stress and the expression profile of known stress responsive genes was evaluated. The gene expression profile of BN115, a known cold-responsive gene in B. napus, was similar to that described for intact cold-acclimated plants. Likewise, two late embryogenesis abundant (Lea) genes were shown to be up-regulated in response to low temperature or osmotic stress. The results demonstrate that B. napus MD cell suspension cultures are a useful system for the investigation of changes in gene expression in plants brought about by abiotic stress.  相似文献   

9.
10.
11.
Sterility in the universally exploited PET1-CMS system of sunflower is associated with the expression of orfH522, a novel mitochondrial gene. Definitive evidence that ORFH522 is directly responsible for male sterility is lacking. To test the hypothesis that ORFH522 is sufficient to induce male sterility, a set of chimeric constructs were developed. The cDNA of orfH522 was cloned in-frame with yeast coxIV pre-sequence, and was expressed under tapetum-specific promoter TA29 (construct designated as TCON). For developing control vectors, orfH522 was cloned without the transit peptide under TA29 promoter (TON) or orfH522 was cloned with or without transit peptide under the constitutive CaMV35S promoter (SCOP and SOP). Among several independent transformants obtained with each of the gene cassettes, one third of the transgenics (6/17) with TCON were completely male sterile while more than 10 independent transformants obtained with each of the control vectors were fertile. The male sterile plants were morphologically similar to fertile plants, but had anthers that remained below the stigmatic surface at anthesis. RT-PCR analysis of the sterile plants confirmed the anther-specific expression of orfH522 and bright-field microscopy demonstrated ablation of the tapetal cell layer. Premature DNA fragmentation and programmed cell death was observed at meiosis stage in the anthers of sterile plants. Stable transmission of induced male sterility trait was confirmed in test cross progeny. This constitutes the first report at demonstrating the induction of male sterility by introducing orfH522 gene that could be useful for genetic engineering of male sterility. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
An in-situ enzyme histochemical method is described that preserves the tissue and cell structure as well as the enzyme activities. Flower buds at different developmental stages from wild-type and transgenic Brassica napus plants, the latter containing the GUS gene under the control of a tapetum-specific promoter, were used as starting material. The method is based on the following principles: processing of the tissue on crushed ice, no fixation but a pretreatment with spermidine, partial dehydration with acetone, and a final embedding in a water-miscible glycol methacrylate resin at 5°C. This method was used to set up a sensitive p-glucuronidase histochemical assay with a high resolution. A succinate dehydrogenase assay was included as a control for tissue and cell viability as well as a standard for the relative metabolic activities between different tissues and cell types.  相似文献   

13.
The Brassica napus cDNA clone A9 and the corresponding Arabidopsis thaliana gene have been sequenced. The B. napus cDNA and the A. thaliana gene encode proteins that are 73% identical and are predicted to be 10.3 kDa and 11.6 kDa in size respectively. Fusions of an RNase gene and the reporter gene -glucuronidase to the A. thaliana A9 promoter demonstrated that in tobacco the A9 promoter is active solely in tapetal cells. Promoter activity is first detectable in anthers prior to sporogenous cell meiosis and ceases during microspore premitotic interphase.The deduced A9 protein sequence has a pattern of cysteine residues that is present in a superfamily of seed plant proteins which contains seed storage proteins and several protease and -amylase inhibitors.  相似文献   

14.
Summary Sexual and somatic hybrid plants have been produced between Sinapis alba L. (white mustard) and Brassica napus L. (oil-seed rape), with the aim to transfer resistance to the beet cyst nematode Heterodera schachtii Schm. (BCN) from white mustard into the oil-seed rape gene pool. Only crosses between diploid accessions of S. alba (2n = 24, Sa1Sa1) as the pistillate parent and several B. napus accessions (2n = 38, AACC) yielded hybrid plants with 31 chromosomes. Crosses between tetraploid accessions of S. alba (2n = 48, Sa1Sa1Sa1Sa1) and B. napus were unsuccessful. Somatic hybrid plants were also obtained between a diploid accession of S. alba and B. napus. These hybrids were mitotically unstable, the number of chromosomes ranging from 56 to more than 90. Analysis of total DNA using a pea rDNA probe confirmed the hybrid nature of the sexual hybrids, whereas for the somatic hybrids a pattern identical to that of B. napus was obtained. Using chloroplast (cp) and mitochondrial (mt) DNA sequences, we found that all of the sexual F1 hybrids and somatic hybrids contained cpDNA and mtDNA of the S. alba parent. No recombinant mtDNA or cpDNA pattern was observed. Three BC1 plants were obtained when sexual hybrids were back-crossed with B. napus. Backcrossing of somatic hybrids with B. napus was not successful. Three sexual hybrids and one BC1 plant, the latter obtained from a cross between a sexual hybrid and B. napus, were found to show a high level of BCN resistance. The level of BCN resistance of the somatic hybrids was in general high, but varied between cuttings from the same plant. Results from cytological studies of chromosome association at meiotic metaphase I in the sexual hybrids suggest partial homology between chromosomes of the AC and Sa1 genomes and thus their potential for gene exchange.  相似文献   

15.
16.
Intergeneric somatic hybridization between Brassica napus and Raphanus sativus was carried out to enrich gene pool of B. napus. Twelve somatic hybrids were produced via PEG-mediated protoplast fusion between B. napus and R. sativus. The hybridity was confirmed by morphological observation and molecular marker analysis. Hybrid progenies (BC1) were obtained via backcrosses with B. napus. Behaviour of R. sativus chromosomes in a B. napus background in the F1 and BC1 plants was revealed by genomic in situ hybridization (GISH). The potential of somatic hybridization to enrich the suitable gene pool for rapeseed breeding is discussed.  相似文献   

17.
18.
We isolated a gene, BnSKP1γ1, expressed in rapeseed (Brassica napus) microspores, which encodes a protein closely related to the Saccharomyces cerevisiae Skp1p protein previously shown to play a role in cell cycle regulation. Twelve SKP1-related genes have already been identified in the Arabidopsis thaliana genome. Using a PCR-based strategy, we isolated three other genes. To date, most data available concerning the function of the SKP1-related genes in plants are indirect. Studies on transgenic A. thaliana plants showthat a 1100-bp BnSKP1γ1 promoter fragment can direct GUS expression in female gametophytes soon after the first haploid mitosis and in male gametophytes from the tetrade stage. No GUS expression can be detected in sporophytic tissues. RT-PCR experiments suggest that this gene is expressed in a similar way in rapeseed. This is the first reported case of a gene exhibiting such an expression pattern in angiosperms. Received: 5 October 1999 / Revision accepted: 28 March 2000  相似文献   

19.
20.
Summary Genetically transformed plants of Brassica napus L. (oilseed rape) were obtained from hypocotyl expiants using Agrobacterium tumefaciens vectors. Hypocotyl explants were inoculated with disarmed or oncogenic A. tumefaciens strains, EHA101 and A281, and then cultured on media containing kanamycin. The A. tumefaciens strains harbored a binary vector, which contained a neomycin phosphotransferase II (NPTII) gene driven by the 35S promoter of cauliflower mosaic virus and an engineered napin (seed storage protein) gene with its own promoter (300 nucleotides 5 to the start of translation). Transformation of B. napus plants was confirmed by detection of NPT II enzyme activity, Southern blot analysis and inheritance of the kanamycin-resistance trait (NPT II gene) in the progeny. Expression of the engineered napin gene in embryos but not in leaves of transgenic plants was observed by Northern analysis. These data demonstrate that morphologically normal, fertile transgenic B. napus plants can be obtained using Agrobacterium as a gene vector and that developmentally regulated expression of reintroduced genes can be achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号