共查询到20条相似文献,搜索用时 0 毫秒
1.
Ursinus A van den Ent F Brechtel S de Pedro M Höltje JV Löwe J Vollmer W 《Journal of bacteriology》2004,186(20):6728-6737
The binding of the essential cell division protein FtsN of Escherichia coli to the murein (peptidoglycan) sacculus was studied. Soluble truncated variants of FtsN, including the complete periplasmic part of the protein as well as a variant containing only the C-terminal 77 amino acids, did bind to purified murein sacculi isolated from wild-type cells. FtsN variants lacking this C-terminal region showed reduced or no binding to murein. Binding of FtsN was severely reduced when tested against sacculi isolated either from filamentous cells with blocked cell division or from chain-forming cells of a triple amidase mutant. Binding experiments with radioactively labeled murein digestion products revealed that the longer murein glycan strands (>25 disaccharide units) showed a specific affinity to FtsN, but neither muropeptides, peptides, nor short glycan fragments bound to FtsN. In vivo FtsN could be cross-linked to murein with the soluble disulfide bridge containing cross-linker DTSSP. Less FtsN, but similar amounts of OmpA, was cross-linked to murein of filamentous or of chain-forming cells compared to levels in wild-type cells. Expression of truncated FtsN variants in cells depleted in full-length FtsN revealed that the presence of the C-terminal murein-binding domain was not required for cell division under laboratory conditions. FtsN was present in 3,000 to 6,000 copies per cell in exponentially growing wild-type E. coli MC1061. We discuss the possibilities that the binding of FtsN to murein during cell division might either stabilize the septal region or might have a function unrelated to cell division. 相似文献
2.
Bertsche U Kast T Wolf B Fraipont C Aarsman ME Kannenberg K von Rechenberg M Nguyen-Distèche M den Blaauwen T Höltje JV Vollmer W 《Molecular microbiology》2006,61(3):675-690
The murein (peptidoglycan) sacculus is an essential polymer embedded in the bacterial envelope. The Escherichia coli class B penicillin-binding protein (PBP) 3 is a murein transpeptidase and essential for cell division. In an affinity chromatography experiment, the bifunctional transglycosylase-transpeptidase murein synthase PBP1B was retained by PBP3-sepharose when a membrane fraction of E. coli was applied. The direct protein-protein interaction between purified PBP3 and PBP1B was characterized in vitro by surface plasmon resonance. The interaction was confirmed in vivo employing two different methods: by a bacterial two-hybrid system, and by cross-linking/co-immunoprecipitation. In the bacterial two-hybrid system, a truncated PBP3 comprising the N-terminal 56 amino acids interacted with PBP1B. Both synthases could be cross-linked in vivo in wild-type cells and in cells lacking FtsW or FtsN. PBP1B localized diffusely and in foci at the septation site and also at the side wall. Statistical analysis of the immunofluorescence signals revealed that the localization of PBP1B at the septation site depended on the physical presence of PBP3, but not on the activity of PBP3. These studies have demonstrated, for the first time, a direct interaction between a class B PBP (PBP3) and a class A PBP (PBP1B) in vitro and in vivo, indicating that different murein synthases might act in concert to enlarge the murein sacculus during cell division. 相似文献
3.
Topological characterization of the essential Escherichia coli cell division protein FtsN. 总被引:4,自引:2,他引:4 下载免费PDF全文
Genetic and biochemical approaches were used to analyze a topological model for FtsN, a 36-kDa protein with a putative transmembrane segment near the N terminus, and to ascertain the requirements of the putative cytoplasmic and membrane-spanning domains for the function of this protein. Analysis of FtsN-PhoA fusions revealed that the putative transmembrane segment of FtsN could act as a translocation signal. Protease accessibility studies of FtsN in spheroblasts and inverted membrane vesicles confirmed that FtsN had a simple bitopic topology with a short cytoplasmic amino terminus, a single membrane-spanning domain, and a large periplasmic carboxy terminus. To ascertain the functional requirements of the N-terminal segments of FtsN, various constructs were made. Deletion of the N-terminal cytoplasmic and membrane-spanning domains led to intracellular localization of the carboxy domain, instability,and loss of function. Replacement of the N-terminal cytoplasmic and membrane-spanning domains with a membrane-spanning domain from MalG restored subcellular localization and function. These N-terminal domains of FtsN could also be replaced by the cleavable MalE signal sequence with restoration of subcellular localization and function. It is concluded that the N-terminal, cytoplasmic, and transmembrane domains of FtsN are not required for function of the carboxy domain other than to transport it to the periplasm. FtsQ and FtsI were also analyzed. 相似文献
4.
Bertsche U Breukink E Kast T Vollmer W 《The Journal of biological chemistry》2005,280(45):38096-38101
PBP1B is a major bifunctional murein (peptidoglycan) synthase catalyzing transglycosylation and transpeptidation reactions in Escherichia coli. PBP1B has been shown to form dimers in vivo. The K(D) value for PBP1B dimerization was determined by surface plasmon resonance. The effect of the dimerization of PBP1B on its activities was studied with a newly developed in vitro murein synthesis assay with radioactively labeled lipid II precursor as substrate. Under conditions at which PBP1B dimerizes, the enzyme synthesized murein with long glycan strands (>25 disaccharide units) and with almost 50% of the peptides being part of cross-links. PBP1B was also capable of synthesizing trimeric muropeptide structures. Tri-, tetra-, and pentapeptide compounds could serve as acceptors in the PBP1B-catalyzed transpeptidation reaction. 相似文献
5.
Overproduction of inactive variants of the murein synthase PBP1B causes lysis in Escherichia coli 下载免费PDF全文
Penicillin-binding protein 1B (PBP1B) of Escherichia coli is a bifunctional murein synthase containing both a transpeptidase domain and a transglycosylase domain. The protein is present in three forms (alpha, beta, and gamma) which differ in the length of their N-terminal cytoplasmic region. Expression plasmids allowing the production of native PBP1B or of PBP1B variants with an inactive transpeptidase or transglycosylase domain or both were constructed. The inactive domains contained a single amino acid exchange in an essential active-site residue. Overproduction of the inactive PBP1B variants, but not of the active proteins, caused lysis of wild-type cells. The cells became tolerant to lysis by inactive PBP1B at a pH of 5.0, which is similar to the known tolerance for penicillin-induced lysis under acid pH conditions. Lysis was also reduced in mutant strains lacking several murein hydrolases. In particular, a strain devoid of activity of all known lytic transglycosylases was virtually tolerant, indicating that mainly the lytic transglycosylases are responsible for the observed lysis effect. A possible structural interaction between PBP1B and murein hydrolases in vivo by the formation of a multienzyme complex is discussed. 相似文献
6.
FtsN is the last known essential protein component to be recruited to the Escherichia coli divisome, and has several special properties. Here we report the isolation of suppressor mutants of ftsA that allow viability in the absence of ftsN. Cells producing the FtsA suppressors exhibited a mild cell division deficiency in the absence of FtsN, and no obvious phenotype in its presence. Remarkably, these altered FtsA proteins also could partially suppress a deletion of ftsK or zipA, were less toxic than wild-type FtsA when in excess, and conferred resistance to excess MinC, indicating that they share some properties with the previously isolated FtsA* suppressor mutant, and bypass the need for ftsN by increasing the integrity of the Z ring. TolA, which normally requires FtsN for its recruitment to the divisome, localized proficiently in the suppressed ftsN null strain, strongly suggesting that FtsN does not recruit the Tol-Pal complex directly. Therefore, despite its classification as a core divisome component, FtsN has no unique essential function but instead promotes overall Z ring integrity. The results strongly suggest that FtsA is conformationally flexible, and this flexibility is a key modulator of divisome function at all stages. 相似文献
7.
Adrien Boes Frederic Kerff Raphael Herman Thierry Touze Eefjan Breukink Mohammed Terrak 《The Journal of biological chemistry》2020,295(52):18256
Peptidoglycan (PG) is an essential constituent of the bacterial cell wall. During cell division, the machinery responsible for PG synthesis localizes mid-cell, at the septum, under the control of a multiprotein complex called the divisome. In Escherichia coli, septal PG synthesis and cell constriction rely on the accumulation of FtsN at the division site. Interestingly, a short sequence of FtsN (Leu75–Gln93, known as EFtsN) was shown to be essential and sufficient for its functioning in vivo, but what exactly this sequence is doing remained unknown. Here, we show that EFtsN binds specifically to the major PG synthase PBP1b and is sufficient to stimulate its biosynthetic glycosyltransferase (GTase) activity. We also report the crystal structure of PBP1b in complex with EFtsN, which demonstrates that EFtsN binds at the junction between the GTase and UB2H domains of PBP1b. Interestingly, mutations to two residues (R141A/R397A) within the EFtsN-binding pocket reduced the activation of PBP1b by FtsN but not by the lipoprotein LpoB. This mutant was unable to rescue the ΔponB-ponAts strain, which lacks PBP1b and has a thermosensitive PBP1a, at nonpermissive temperature and induced a mild cell-chaining phenotype and cell lysis. Altogether, the results show that EFtsN interacts with PBP1b and that this interaction plays a role in the activation of its GTase activity by FtsN, which may contribute to the overall septal PG synthesis and regulation during cell division. 相似文献
8.
Localization of the Escherichia coli cell division protein FtsI (PBP3) to the division site and cell pole 总被引:1,自引:1,他引:1
David S. Weiss Kit Pogliano Michael Carson Luz-Maria Guzman Claudine Fraipont Martine Nguyen-Distèche Richard Losick & Jon Beckwith 《Molecular microbiology》1997,25(4):671-681
FtsI, also known as penicillin-binding protein 3, is a transpeptidase required for the synthesis of peptidoglycan in the division septum of the bacterium, Escherichia coli . FtsI has been estimated to be present at about 100 molecules per cell, well below the detection limit of immunoelectron microscopy. Here, we confirm the low abundance of FtsI and use immunofluorescence microscopy, a highly sensitive technique, to show that FtsI is localized to the division site during the later stages of cell growth. FtsI was also sometimes observed at the cell pole; polar localization was not anticipated and its significance is not known. We conclude (i) that immunofluorescence microscopy can be used to localize proteins whose abundance is as low as approximately 100 molecules per cell; and (ii) that spatial and temporal regulation of FtsI activity in septum formation is achieved, at least in part, by timed localization of the protein to the division site. 相似文献
9.
Derouaux A Wolf B Fraipont C Breukink E Nguyen-Distèche M Terrak M 《Journal of bacteriology》2008,190(5):1831-1834
The monofunctional peptidoglycan glycosyltransferase (MtgA) catalyzes glycan chain elongation of the bacterial cell wall. Here we show that MtgA localizes at the division site of Escherichia coli cells that are deficient in PBP1b and produce a thermosensitive PBP1a and is able to interact with three constituents of the divisome, PBP3, FtsW, and FtsN, suggesting that MtgA may play a role in peptidoglycan assembly during the cell cycle in collaboration with other proteins. 相似文献
10.
FtsN is a bitopic membrane protein and the last essential component to localize to the Escherichia coli cell division machinery, or divisome. The periplasmic SPOR domain of FtsN was previously shown to localize to the divisome in a self‐enhancing manner, relying on the essential activity of FtsN and the peptidoglycan synthesis and degradation activities of FtsI and amidases respectively. Because FtsN has a known role in recruiting amidases and is predicted to stimulate the activity of FtsI, it follows that FtsN initially localizes to division sites in a SPOR‐independent manner. Here, we show that the cytoplasmic and transmembrane domains of FtsN (FtsNCyto‐TM) facilitated localization of FtsN independently of its SPOR domain but dependent on the early cell division protein FtsA. In addition, SPOR‐independent localization preceded SPOR‐dependent localization, providing a mechanism for the initial localization of FtsN. In support of the role of FtsNCyto‐TM in FtsN function, a variant of FtsN lacking the cytoplasmic domain localized to the divisome but failed to complement an ftsN deletion unless it was overproduced. Simultaneous removal of the cytoplasmic and SPOR domains abolished localization and complementation. These data support a model in which FtsA–FtsN interaction recruits FtsN to the divisome, where it can then stimulate the peptidoglycan remodelling activities required for SPOR‐dependent localization. 相似文献
11.
Ana Isabel Rico Marta García‐Ovalle Pilar Palacios Mercedes Casanova Miguel Vicente 《Molecular microbiology》2010,76(3):760-771
Deprivation of FtsN, the last protein in the hierarchy of divisome assembly, causes the disassembly of other elements from the division ring, even extending to already assembled proto‐ring proteins. Therefore the stability and function of the divisome to produce rings active in septation is not guaranteed until FtsN is recruited. Disassembly follows an inverse sequential pathway relative to assembly. In the absence of FtsN, the frequencies of FtsN and FtsQ rings are affected similarly. Among the proto‐ring components, ZipA are more sensitive than FtsZ or FtsA rings. In contrast, removal of FtsZ leads to an almost simultaneous disappearance of the other elements from rings. Although restoration of FtsN allows for a quick reincorporation of ZipA into proto‐rings, the de novo joint assembly of the three components when FtsZ levels are restored to FtsZ‐deprived filaments is even faster. This suggests that the recruitment of ZipA into FtsZ‐FtsA incomplete proto‐rings may require first a period for the reversal of these partial assemblies. 相似文献
12.
S100B is a small, dimeric EF-hand calcium-binding protein abundant in vertebrates. Upon calcium binding, S100B undergoes a conformational change allowing it to interact with a variety of target proteins, including the cytoskeletal proteins tubulin and glial fibrillary acidic protein. In both cases, S100B promotes the in vitro disassembly of these proteins in a calcium-sensitive manner. Despite this, there is little in vivo evidence for the interaction of proteins such as tubulin with S100B. To probe these interactions, we studied the expression of human S100B in Escherichia coli and its interaction with the prokaryotic ancestor of tubulin, FtsZ, the major protein involved in bacterial division. Expression of S100B protein in E. coli results in little change in FtsZ protein levels, causes a filamenting bacterial phenotype characteristic of FtsZ inhibition, and leads to missed rounds of cell division. Further, S100B localizes to positions similar to those of FtsZ in bacterial filaments: the small foci at the poles, the mid-cell positions, and between the nucleoids at regular intervals. Calcium-dependent physical interaction between S100B and FtsZ was demonstrated in vitro by affinity chromatography, and this interaction was severely inhibited by the competitor peptide TRTK-12. Together these results indicate that S100B interacts with the tubulin homologue FtsZ in vivo, modulating its activity in bacterial cell division. This approach will present an important step for the study of S100 protein interactions in vivo. 相似文献
13.
The membrane topology of Escherichia coli FtsW, a 46-kDa essential protein, was analyzed using a set of 28 ftsW-alkaline phosphatase (ftsW-phoA) and nine ftsW-beta-lactamase (ftsW-bla) gene fusions obtained by in vivo and in vitro methods. The alkaline phosphatase activities or resistance pattern of cells expressing the FtsW-PhoA or FtsW-Bla fusions confirmed only eight out of 10 transmembrane segments predicted by computational methods. After comparison with the recent topology of Streptococcus pneumoniae FtsW, we could identify all the fusions in absolute agreement with the predicted model: N-terminal and C-terminal ends in the cytoplasm, 10 transmembrane segments and one large loop of 67 amino acids (E240-E306) located in the periplasm. 相似文献
14.
The essential cell division protein FtsN contains a critical disulfide bond in a non‐essential domain 下载免费PDF全文
Disulfide bonds are found in many proteins associated with the cell wall of Escherichia coli, and for some of these proteins the disulfide bond is critical to their stability and function. One protein found to contain a disulfide bond is the essential cell division protein FtsN, but the importance of this bond to the protein's structural integrity is unclear. While it evidently plays a role in the proper folding of the SPOR domain of FtsN, this domain is non‐essential, suggesting that the disulfide bond might also be dispensable. However, we find that FtsN mutants lacking cysteines give rise to filamentous growth. Furthermore, FtsN protein levels in strains expressing these mutants were significantly lower than in a strain expressing the wild‐type allele, as were FtsN levels in strains incapable of making disulfide bonds (dsb‐) exposed to anaerobic conditions. These results strongly suggest that FtsN lacking a disulfide bond is unstable, thereby making this disulfide critical for function. We have previously found that dsb‐ strains fail to grow anaerobically, and the results presented here suggest that this growth defect may be due in part to misfolded FtsN. Thus, proper cell division in E. coli is dependent upon disulfide bond formation. 相似文献
15.
Santosh Kumar Singh L. SaiSree Ravi N. Amrutha Manjula Reddy 《Molecular microbiology》2012,86(5):1036-1051
Bacterial peptidoglycan (PG or murein) is a single, large, covalently cross‐linked macromolecule and forms a mesh‐like sacculus that completely encases the cytoplasmic membrane. Hence, growth of a bacterial cell is intimately coupled to expansion of murein sacculus and requires cleavage of pre‐existing cross‐links for incorporation of new murein material. Although, conceptualized nearly five decades ago, the mechanism of such essential murein cleavage activity has not been studied so far. Here, we identify three new murein hydrolytic enzymes in Escherichia coli, two (Spr and YdhO) belonging to the NlpC/P60 peptidase superfamily and the third (YebA) to the lysostaphin family of proteins that cleave peptide cross‐bridges between glycan chains. We show that these hydrolases are redundantly essential for bacterial growth and viability as a conditional mutant lacking all the three enzymes is unable to incorporate new murein and undergoes rapid lysis upon shift to restrictive conditions. Our results indicate the step of cross‐link cleavage as essential for enlargement of the murein sacculus, rendering it a novel target for development of antibacterial therapeutic agents. 相似文献
16.
Enlargement of the stress-bearing murein sacculus of bacteria depends on the coordinated interaction of murein synthases and hydrolases. To understand the mechanism of interaction of these two classes of proteins affinity chromatography and surface plasmon resonance (SPR) studies were performed. The membrane-bound lytic transglycosylase MltA when covalently linked to CNBr-activated Sepharose specifically retained the penicillin-binding proteins (PBPs) 1B, 1C, 2, and 3 from a crude Triton X-100 membrane extract of Escherichia coli. In the presence of periplasmic proteins also PBP1A was specifically bound. At least five different non-PBPs showed specificity for MltA-Sepharose. The amino-terminal amino acid sequence of one of these proteins could be obtained, and the corresponding gene was mapped at 40 min on the E. coli genome. This MltA-interacting protein, named MipA, in addition binds to PBP1B, a bifunctional murein transglycosylase/transpeptidase. SPR studies with PBP1B immobilized to ampicillin-coated sensor chips showed an oligomerization of PBP1B that may indicate a dimerization. Simultaneous application of MipA and MltA onto a PBP1B sensor chip surface resulted in the formation of a trimeric complex. The dissociation constant was determined to be about 10(-6) M. The formation of a complex between a murein polymerase (PBP1B) and a murein hydrolase (MltA) in the presence of MipA represents a first step in a reconstitution of the hypothetical murein-synthesizing holoenzyme, postulated to be responsible for controlled growth of the stress-bearing sacculus of E. coli. 相似文献
17.
Membrane intermediates in the peptidoglycan metabolism of Escherichia coli: possible roles of PBP 1b and PBP 3. 下载免费PDF全文
Y van Heijenoort M Gmez M Derrien J Ayala J van Heijenoort 《Journal of bacteriology》1992,174(11):3549-3557
The two membrane precursors (pentapeptide lipids I and II) of peptidoglycan are present in Escherichia coli at cell copy numbers no higher than 700 and 2,000 respectively. Conditions were determined for an optimal accumulation of pentapeptide lipid II from UDP-MurNAc-pentapeptide in a cell-free system and for its isolation and purification. When UDP-MurNAc-tripeptide was used in the accumulation reaction, tripeptide lipid II was formed, and it was isolated and purified. Both lipids II were compared as substrates in the in vitro polymerization by transglycosylation assayed with PBP 1b or PBP 3. With PBP 1b, tripeptide lipid II was used as efficiently as pentapeptide lipid II. It should be stressed that the in vitro PBP 1b activity accounts for at best to 2 to 3% of the in vivo synthesis. With PBP 3, no polymerization was observed with either substrate. Furthermore, tripeptide lipid II was detected in D-cycloserine-treated cells, and its possible in vivo use in peptidoglycan formation is discussed. In particular, it is speculated that the transglycosylase activity of PBP 1b could be coupled with the transpeptidase activity of PBP 3, using mainly tripeptide lipid II as precursor. 相似文献
18.
Mapping of conformational epitopes of monoclonal antibodies against Escherichia coli penicillin-binding protein 1B (PBP 1B) by means of hybrid protein analysis: implications for the tertiary structure of PBP 1B. 下载免费PDF全文
T Den Blaauwen E Pas A Edelman B G Spratt N Nanninga 《Journal of bacteriology》1990,172(12):7284-7288
We have analyzed the location of the epitope areas of the four monoclonal antibody groups against penicillin-binding protein 1B (PBP 1B; T. den Blaauwen, F. B. Wientjes, A. H. J. Kolk, B. G. Spratt, and N. Nanninga, J. Bacteriol. 171:1393-1401). They could be specified by studying monoclonal antibody binding patterns to amino- and carboxy-terminal truncated PBP 1B molecules. Monoclonal antibodies against conformational epitopes, with the exception of one epitope area, did not recognize PBP 1B molecules that had not been translocated across the membrane. Apparently, translocation is required for PBP 1B to fully obtain its native conformation. 相似文献
19.
Characterization of inner membrane protein YciB in Escherichia coli: YciB interacts with cell elongation and division proteins 下载免费PDF全文
The function of inner membrane protein YciB in Escherichia coli has not been identified. In this study, the membrane topology of the protein that contains five transmembrane domains was clarified. YciB was found to interact with various proteins involved in cell elongation and cell division using a bacterial two‐hybrid system. It was also found that the deletion mutant of yciB is susceptible to the low osmolarity. These observations together with previous reports indicate that YciB is involved in synthesis of the cell envelope by interacting with cell elongation and cell division complexes. 相似文献
20.
Genetic analysis of the cell division protein FtsI (PBP3): amino acid substitutions that impair septal localization of FtsI and recruitment of FtsN 下载免费PDF全文
FtsI (also called PBP3) of Escherichia coli is a transpeptidase required for synthesis of peptidoglycan in the division septum and is one of several proteins that localize to the septal ring. FtsI comprises a small cytoplasmic domain, a transmembrane helix, a noncatalytic domain of unknown function, and a catalytic (transpeptidase) domain. The last two domains reside in the periplasm. We used PCR to randomly mutagenize ftsI, ligated the products into a green fluorescent protein fusion vector, and screened approximately 7,500 transformants for gfp-ftsI alleles that failed to complement an ftsI null mutant. Western blotting and penicillin-binding assays were then used to weed out proteins that were unstable, failed to insert into the cytoplasmic membrane, or were defective in catalysis. The remaining candidates were tested for septal localization and ability to recruit another division protein, FtsN, to the septal ring. Mutant proteins severely defective in localization to the septal ring all had lesions in one of three amino acids-R23, L39, or Q46-that are in or near the transmembrane helix and implicate this region of FtsI in septal localization. Mutant FtsI proteins defective in recruitment of FtsN all had lesions in one of eight residues in the noncatalytic domain. The most interesting of these mutants had lesions at G57, S61, L62, or R210. Although separated by approximately 150 residues in the primary sequence, these amino acids are close together in the folded protein and might constitute a site of FtsI-FtsN interaction. 相似文献