首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Phosphoenolpyruvate carboxykinase (PEPCK) is present in ripening tomato fruits. A cDNA encoding PEPCK was identified from a PCR-based screen of a cDNA library from ripe tomato fruit. The sequence of the tomato PEPCK cDNA and a cloned portion of the genomic DNA shows that the complete cDNA sequence contains an open reading frame encoding a peptide of 662 amino acid residues in length and predicts a polypeptide with a molecular mass of 73.5 kDa, which corresponds to that detected by western blotting. Only one PEPCK gene was identified in the tomato genome. PEPCK is shown to be present in the pericarp of ripening tomato fruits by activity measurements, western blotting and mRNA analysis. PEPCK abundance and activity both increased during fruit ripening, from an undetectable amount in immature green fruit to a high amount in ripening fruit. PEPCK mRNA, protein and activity were also detected in germinating seeds and, in lower amounts, in roots and stems of tomato. The possible role of PEPCK in the pericarp of tomato fruit during ripening is discussed.  相似文献   

3.
Asr1, Asr2 andAsr3 are three homologous clones isolated from tomato whose expression is believed to be regulated by abscisic acid (ABA); the corresponding genes thus participate in physiological and developmental processes such as responses of leaf and root to water stress, and fruit ripening. In this report, results obtained with Near Isogenic Lines reveal thatAsr1, Asr2 andAsr3 represent three different loci. In addition, we map these genes on the restriction fragment length polymorphism (RFLP) map of the tomato genome by using an F2 population derived from an interspecific hybrid crossL. esculentum × L. penelli. RFLP data allow us to map these genes on chromosome 4, suggesting that they belong to a gene family. The elucidation of the genomic organization of theAsr gene family may help in understanding the role of its members in the response to osmotic stress, as well as in fruit ripening, at the molecular level.  相似文献   

4.
5.
6.
7.
A tomato fruit cDNA library was differentially screened to identify mRNAs present at higher levels in fruit of the tomato ripening mutant rin (ripening inhibitor). Complete sequencing of a unique clone ERT D1 revealed an open reading frame with homology to several glutamate decarboxylases. The deduced polypeptide sequence has 80% overall amino acid sequence similarity to a Petunia hybrida glutamate decarboxylase (petGAD) which carries a calmodulin-binding site at its carboxyl terminus and ERT D1 appears to have a similar domain. ERT D1 mRNA levels peaked at the first visible sign of fruit colour change during normal tomato ripening and then declined, whereas in fruit of the ripening impaired mutant, rin, accumulation of this mRNA continued until at least 14 days after the onset of ripening. This mRNA was present at much lower levels in other tissues, such as leaves, roots and stem, and was not increased by wounding. Possible roles for GAD, and its product -aminobutyric acid (GABA) in fruit, are discussed.  相似文献   

8.
9.
We have utilized a gene from bacteriophage T3 that encodes the enzyme S-adenosylmethionine hydrolase (SAMase) to generate transgenic tomato plants that produce fruit with a reduced capacity to synthesize ethylene. S-adenosylmethionine (SAM) is the metabolic precursor of 1-aminocyclopropane-1-carboxylic acid, the proximal precursor to ethylene. SAMase catalyzes the conversion of SAM to methylthioadenosine and homoserine. To restrict the presence of SAMase to ripening fruit, the promoter from the tomato E8 gene was used to regulate SAMase gene expression. Transgenic tomato plants containing the 1.1 kb E8 promoter bore fruit that expressed SAMase during the breaker and orange stage of fruit ripening and stopped expression after the fruit fully ripened. Plants containing the 2.3 kb E8 promoter expressed SAMase at higher levels during the post-breaker phases of fruit ripening and had a substantially reduced capacity to synthesize ethylene.  相似文献   

10.
Recent studies suggest that fruit cuticle is an important contributing factor to tomato (Solanum lycopersicum) fruit shelf life and storability. Moreover, it has been hypothesized that variation in fruit cuticle composition may underlie differences in traits such as fruit resistance to desiccation and microbial infection. To gain a better understanding of cuticle lipid composition diversity during fruit ontogeny and to assess if there are common features that correlate with ripening, we examined developmental changes in fruit cuticle wax and cutin monomer composition of delayed‐ripening tomato fruit mutants, ripening inhibitor (rin) and non‐ripening (nor) and delayed‐ripening landrace Alcobaça. Previous reports show that fruit ripening processes such as climacteric ethylene production, cell wall degradation and color change are significantly delayed, or do not occur, in these lines. In the study presented here, however, we show that fruits from rin, nor and Alcobaça have cuticle lipid compositions that differ significantly from normal fruits of Ailsa Craig (AC) even at very early stages in fruit development, with continuing impacts throughout ripening. Moreover, rin, nor and the Alcobaça lines show quite different wax profiles from AC and each other throughout fruit development. Although cutin monomer composition differed much less than wax composition among the genotypes, all delayed‐ripening lines possessed higher relative amounts of C18 monomers than AC. Together, these results reveal new genetic associations between cuticle and fruit development processes and define valuable genetic resources to further explore the importance of cuticle in fruit shelf life.  相似文献   

11.
12.
The essential amino acid methionine is a substrate for the synthesis of S-adenosyl-methionine (SAM), that donates its methyl group to numerous methylation reactions, and from which polyamines and ethylene are generated. To study the regulatory role of methionine synthesis in tomato fruit ripening, which requires a sharp increase in ethylene production, we cloned a cDNA encoding cystathionine γ-synthase (CGS) from tomato and analysed its mRNA and protein levels during tomato fruit ripening. CGS mRNA and protein levels peaked at the “turning” stage and declined as the fruit ripened. Notably, the tomato CGS mRNA level in both leaves and fruit was negatively affected by methionine feeding, a regulation that Arabidopsis, but not potato CGS mRNA is subject to. A positive correlation was found between elevated ethylene production and increased CGS mRNA levels during the ethylene burst of the climacteric ripening of tomato fruit. In addition, wounding of pericarp from tomato fruit at the mature green stage stimulated both ethylene production and CGS mRNA level. Application of exogenous methionine to pericarp of mature green fruit increased ethylene evolution, suggesting that soluble methionine may be a rate limiting metabolite for ethylene synthesis. Moreover, treatment of mature green tomato fruit with the ethylene-releasing reagent Ethephon caused an induction of CGS mRNA level, indicating that CGS gene expression is regulated by ethylene. Taken together, these results imply that in addition to recycling of the methionine moieties via the Yang pathway, operating during synthesis of ethylene, de novo synthesis of methionine may be required when high rates of ethylene production are induced.  相似文献   

13.
In addition to the ethylene formed at the onset of tomato fruit ripening, three peaks of ethylene are produced during earlier periods of in vitro development of tomato flower to fruit. This is the first report characterizing ethylene production during early development of tomato fruit. Previous reports from this laboratory showed that VFNT Cherry tomato calyces are transformed into fruit tissue when cultured in vitro at lower temperatures (16–23 °C). Early ethylene production was also measured in these ripening calyces, as well as in fruit and calyces of other tomato cultivars cultured in vitro. Calyces from Ailsa Craig and rin tomato flowers, which are not transformed into fruit tissue at these lower temperatures, also form ethylene during early periods of in vitro culture, but to a much smaller extent. Unlike ethylene formed at the onset of fruit ripening, the earlier peaks are resistant to the inhibitors, aminovinylglycine (AVG) and CoCl2. The data suggest that ethylene produced during earlier periods of tomato fruit development is formed by an alternative biosynthetic pathway.  相似文献   

14.
The ripening of a fleshy fruit represents the summation of an array of biochemical processes that are regulated by interactions between developmental programs and environmental inputs. Analysis of tomato (Solanum lycopersicum) mutants and inhibitor studies indicate that ethylene is necessary for full development of the ripening program of climacteric fruit such as tomato, yet ethylene alone is not sufficient. This suggests that an interaction between ethylene and nonethylene (or developmental) pathways mediates ripening. In this study, we have examined the physiological basis for ripening inhibition of the dominant Green-ripe (Gr) and Never-ripe 2 (Nr-2) mutants of tomato. Our data suggest that this inhibition is due to ethylene insensitivity in mutant fruit. Further investigation of ethylene responses in Gr and Nr-2 plants also revealed weak ethylene insensitivity during floral senescence and abscission and, during inhibition of root elongation, a phenotype associated with the triple response. However, ethylene-induced inhibition of hypocotyl elongation and petiole epinasty are normal in Gr and Nr-2, suggesting that these loci regulate a subset of ethylene responses. We have mapped both dominant mutations to a 2-cM overlapping region of the long arm of chromosome 1 of tomato, a region not previously linked to any known ethylene signaling loci. The phenotypic similarity and overlapping map location of these mutations suggest Gr and Nr-2 may be allelic and may possibly encode a novel component of the ethylene response pathway.  相似文献   

15.
The juice of unripe fruit from a wild species of tomato, Lycopersicon peruvianum (L.) Mill., LA 107, contains over 50% of its soluble proteins as the sum of two proteinase inhibitors. These are the highest levels of proteinase inhibitors and highest percentage of soluble proteins as proteinase inhibitors of any plant or animal tissue found to date. Fruit of the modern tomato, L. esculentum Mill., contains only negligible quantities of the two inhibitors. The two proteinase inhibitors in the fruit of L. peruvianum are members of the Inhibitor I and II families previously found in potato tubers and in leaves of wounded potato and tomato plants. The levels of the two inhibitors in the unripe fruit decrease significantly during ripening. Unripe fruit from other wild Lycopersicon species such as L. parviflorum Rick, Kesicki, Fobes et Holle, L. hirsutum Humb. et Bonpe., L. pimpinellifolium Mill., and other lines of L. peruvianum contain moderate levels of the inhibitors that also decrease during ripening. Another wild tomato species, L. pennellii Corr., is similar to L. esculentum in not containing the two proteinase inhibitors in either unripe or ripe fruit. The transient levels of the inhibitors in fruit of wild species indicate that they are present in unripe fruit as defensive chemicals against insects, birds or small mammals and their disappearance during ripening may render them edible to facilitate seed dispersal. High levels of mRNAs coding for Inhibitors I and II in unripe fruit of L. peruvianum, LA 107, indicate that strong promoters may regulate the developmentally expressed proteinase-inhibitor genes in tomato fruit that may have a substantial potential for use in genetic-engineering experiments to enhance the production of large quantities of proteinase inhibitors or other proteins in field tomatoes.Abbreviations poly(A)+ mRNA polyadenylated mRNA - SDS-PAGE sodium dodecyl sulfate-polyacrylamide electrophoresis Project 1791, College of Agriculture and Home Economics Research Center, Washington, State University  相似文献   

16.
S‐adenosyl‐l ‐methionine (SAM) is the major methyl donor in cells and it is also used for the biosynthesis of polyamines and the plant hormone ethylene. During climacteric ripening of tomato (Solanum lycopersicum ‘Bonaparte’), ethylene production rises considerably which makes it an ideal object to study SAM involvement. We examined in ripening fruit how a 1‐MCP treatment affects SAM usage by the three major SAM‐associated pathways. The 1‐MCP treatment inhibited autocatalytic ethylene production but did not affect SAM levels. We also observed that 1‐(malonylamino)cyclopropane‐1‐carboxylic acid formation during ripening is ethylene dependent. SAM decarboxylase expression was also found to be upregulated by ethylene. Nonetheless polyamine content was higher in 1‐MCP‐treated fruit. This leads to the conclusion that the ethylene and polyamine pathway can operate simultaneously. We also observed a higher methylation capacity in 1‐MCP‐treated fruit. During fruit ripening substantial methylation reactions occur which are gradually inhibited by the methylation product S‐adenosyl‐l ‐homocysteine (SAH). SAH accumulation is caused by a drop in adenosine kinase expression, which is not observed in 1‐MCP‐treated fruit. We can conclude that tomato fruit possesses the capability to simultaneously consume SAM during ripening to ensure a high rate of ethylene and polyamine production and transmethylation reactions. SAM usage during ripening requires a complex cellular regulation mechanism in order to control SAM levels.  相似文献   

17.
18.
The post-translational modification of proteins enables cells to respond promptly to dynamic stimuli by controlling protein functions. In higher plants, SPINDLY (SPY) and SECRET AGENT (SEC) are two prominent O-glycosylation enzymes that have both unique and overlapping roles; however, the effects of their O-glycosylation on fruit ripening and the underlying mechanisms remain largely unknown. Here we report that SlSPY affects tomato fruit ripening. Using slspy mutants and two SlSPY-OE lines, we provide biological evidence for the positive role of SlSPY in fruit ripening. We demonstrate that SlSPY regulates fruit ripening by changing the ethylene response in tomato. To further investigate the underlying mechanism, we identify a central regulator of ethylene signalling ETHYLENE INSENSITIVE 2 (EIN2) as a SlSPY interacting protein. SlSPY promotes the stability and nuclear accumulation of SlEIN2. Mass spectrometry analysis further identified that SlEIN2 has two potential sites Ser771 and Thr821 of O-glycans modifications. Further study shows that SlEIN2 is essential for SlSPY in regulating fruit ripening in tomatoes. Collectively, our findings reveal a novel regulatory function of SlSPY in fruit and provide novel insights into the role of the SlSPY-SlEIN2 module in tomato fruit ripening.  相似文献   

19.
The tomato (Lycopersicon esculentum Mill.) endo--1,4-glucanase (EGase) Cel1 protein was characterized in fruit using specific antibodies. Two polypeptides ranging between 51 and 52 kDa were detected in the pericarp, and polypeptides ranging between 49 and 51 kDa were detected in locules. The polypeptides recognized by Cel1 antiserum in fruit are within the size range predicted for Cel1 protein and could be derived from heterogeneous glycosylation. Cel1 protein accumulation was examined throughout fruit ripening. Cel1 protein appears in the pericarp at the stage in which many ripening-related changes start, and remains present throughout fruit ripening. In locules, Cel1 protein is already present at the onset of fruit ripening and remains constant during fruit ripening. This pattern of expression supports a possible role for this EGase in the softening of pericarp tissue and in the liquefaction of locules that takes place during ripening. The accumulation of Cel1 protein was also analyzed after fungal infection. Cel1 protein and mRNA levels are down-regulated in pericarp after Botrytis cinerea infection but are not affected in locular tissue. The same behavior was observed when fruits were infected with Penicillium expansum, another fungal pathogen. Cel1 protein and mRNA levels do not respond to wounding. These results support the idea that the tomato Cel1 EGase responds to pathogen infection and supports a relationship between EGases, plant defense responses and fruit ripening.This revised version was published online in August 2004 with corrections to Fig. 1 and Fig. 5.  相似文献   

20.
EIN2 (ethylene insensitive 2) is a very important component in the ethylene signal transduction pathway. Recently, the genomic DNA and full-length cDNA of LeEIN2 (tomato EIN2) have been isolated in our laboratory. To reveal the function of LeEIN2, transgenic tomato plants with reduced expression levels of LeEIN2 were produced. The fruit ripening and expressions of ripening-related genes encoding polygalacturonase and TomLoxB were inhibited in the LeEIN2-silenced transgenic plants compared to the wild-type Ailsa Craig. In the seedling ethylene response assay, the transgenic tomato plants with reduced LeEIN2 expression exhibited ethylene insensitivity. These results indicate that LeEIN2 plays a critical role in regulating tomato fruit ripening and is a positive regulator in ethylene signal transduction pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号