首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Single crystals of adenosine were X-irradiated at 10 K and investigated between 10 and 300 K using K-band ESR and ENDOR spectroscopy. Two free radicals were analyzed. Radical I exhibits small hyperfine couplings to the C8-H, C2-H, and a N3-H protons, and was identified as the N3 protonated base anion radical. Radical II exhibits small hyperfine couplings to a C8-H and an exocyclic -N10-H proton. It is suggested that this is therefore the N10 deprotonated base cation radical. Enough data were not available to analyze a third primary radical believed to be located on the ribose moiety. Upon warming Radical I decays at ca. 40 K with no apparent successor. Likewise, no successor was identified for Radical II, which decays at ca. 100 K. At ca. 200 K there is ESR evidence for the C2 and C8 H-addition radicals. Their precursors have not been identified.  相似文献   

2.
Single crystals of deoxycytidine hydrochloride (CdR.HCl) have been X-irradiated at 10 K with doses up to about 150 kGy and studied using 24 GHz (K-band) EPR, ENDOR and FSE spectroscopy. In this system, the cytosine base is protonated at the N3 position. Nine different radicals were characterized and identified. Three of these are ascribed to three versions of the one-electron reduced species, probably differing in their protonation state. Radicals formed by net hydrogen addition to the cytosine C5 and C6 positions were observed at 10 K. The hydrogen-abstraction radical at the deoxyribose C1' position most probably results from initial oxidation of the base. The remaining radical species are all localized to the sugar moiety, representing products formed by net hydrogen abstraction from three of the five available carbons of the deoxyribose sugar. The lack of base-centered oxidation products as well as the structures of the one-electron reduced species is rationalized by considering the specific proton donor-acceptor properties of this crystalline lattice in comparison with similar systems.  相似文献   

3.
In a study of guanine.HCl.H2O (Gm) single crystals X-irradiated at temperatures between 10 and 77 K, three radical species were found and characterized by ESR and ENDOR spectroscopy. All three are primary products in that they were present immediately following irradiation at T less than 10 K. Radical I, which apparently can exist in two slightly different conformations, was identified as the product of electron gain by the parent molecule and subsequent protonation at O6. Radical I decayed only after warming the crystals beyond 250 K. Radical II was the guanine cation previously reported (D. M. Close, E. Sagstuen, and W. H. Nelson, J. Chem. Phys. 82, 4386 (1985)); however, ENDOR data are reported here which confirm the previous results. The guanine cation in Gm resulted from electron loss from the parent and subsequent deprotonation at N7. It is proposed that Radical III results from OH attack at C8 of the parent molecule, followed by rupture of the C8-N9 bond and ring opening. The OH radicals thought to produce Radical III result from electron loss by the cocrystallized water molecules. The reaction leading to Radical III, unusual in solid-state radiation chemistry, is thought to be mediated by the specific hydrogen bonding network in this crystal.  相似文献   

4.
Radical formation and hole transfer were investigated in crystals of cytosine.HCl (C.HCl) doped with 0-1.1 mol-% 5-methylcytosine x HCl (5MC x HCl). The doping level was determined by NMR spectroscopy. Crystals and polycrystalline samples were X-irradiated at 295 K, 77 K and 12 K and studied with EPR, ENDOR and FSE spectroscopy at these temperatures. At 295 K the dominant radicals were the so-called 3alphaH radical, formed in 5MC by a net H-abstraction from the methyl group, and the cytosine C6 H-addition (5-yl) radical. At 12 K five radicals were identified. These were the 3alphaH radical, cytosine reduction and oxidation products, and the cytosine C6 and C5 H-addition (5-yl and 6-yl, respectively) radicals. The spectroscopic parameters for the 3alphaH radical are very similar to those of a radical observed previously in the crystalline cytosine derivatives cytidine (CR), 2'deoxycytidine hydrochloride (CdR x HCl), 5'dCMP and 3'CMP as well as in the uracil derivative 2-thiouracil (2-TU). It was shown that amounts of the order of tenths of a percent 5MC x HCl doped into crystals of C.HCl give rise to a considerable yield of 3alphaH radicals after exposure to ionizing radiation both at room temperature and at lower temperatures. This supports a previous suggestion that naturally occurring 5-methylated cytosine impurities may be responsible for the formation of 3alphaH radicals in the crystalline cytosine derivatives CR, CdR.HCl, 5'dCMP and 3'CMP and suggests that the 3alphaH radical in these systems is a 5-methylated base-centered radical. The total radical yield in doped C x HCl crystals increased considerably with the doping level, both at low temperatures and at room temperature, implying that the 3alphaH radical is more stable than the primary cytosine radicals. The relative amounts of the 3alphaH radical were obtained by using simulated benchmark spectra to reconstruct experimental EPR spectra of doped polycrystalline samples. Evidence is presented suggesting that the enhanced yield of the 3alphaH radical in doped samples is due to holes originally formed at cytosine bases and transferred to 5-methylcytosine bases in addition to the 3alphaH radical being less exposed to recombination than other cytosine radicals.  相似文献   

5.
Three radical species were detected in an EPR/ENDOR study of X-irradiated hypoxanthine.HCl.H2O single crystals at room temperature: RI was identified as the product of net H addition to C8, RII was identified as the product of net H addition to C2, and RIII was identified as the product of OH addition to C8. The observed set of radicals was the same for room-temperature irradiation as for irradiation at 10 K followed by warming the crystals to room temperature; however, the C2 H-addition and C8 OH-addition radicals were not detectable after storage of the crystals for about 2 months at room temperature. Use of selectively deuterated crystals permitted unique assignment of the observed hyperfine couplings, and results of density functional theory calculations on each of the radical structures were consistent with the experimental results. Comparison of these experimental results with others from previous crystal-based systems and model system computations provides insight into the mechanisms by which the biologically important purine C8 hydroxyl addition products are formed. The evidence from solid systems supports the mechanism of net water addition to one-electron oxidized purine bases and demonstrates the importance of a facial approach between the reactants.  相似文献   

6.
Following X irradiation of 3',5'-cyclic guanosine monophosphate single crystals at 10 K, several free radicals were trapped and detected by ESR/ENDOR/FSE spectroscopy. The two dominant species both have unpaired spin located on the guanine base. One is the product of net hydrogen atom loss from the exocyclic amino group. The spectroscopic characteristics of this resonance leave this assignment unambiguous. The experimental conditions make it likely that this species was formed by deprotonation of the guanine base cation. The nature of the other species is more uncertain. However, the evidence is consistent with the assignment that it is a net OH adduct to the C4 position of the base. Several species in which the unpaired spin was located on the sugar-phosphate region of the molecule were also observed. The mechanisms for the decay of the primary radicals, also leading to the well-known C8 hydrogen addition radical of the guanine base, are described and discussed.  相似文献   

7.
Radical formation in single crystals of hypoxanthine.HCl.H2O, inosine and Na2-5'-IMP.(7.5 H2O) by X-irradiation has been studied using electron-spin-resonance spectroscopy at 9.5 and 35 GHz. In all crystals both H-addition radicals at position C2 and C8 of the purine ring are found. The coupling constants of these two radicals are different and depend strongly on the protonation state of the base. INDO-calculations indicate that the C8-radical is protonated at O6. In Na2-5'-IMP OH-addition radicals at position C2 of the purine ring are formed. Electron adduct radicals are found in the neutral and the N7-protonated base after X-irradiation at 77 K. In Na2-5'-IMP no electron adduct is formed but a radical which probably is the cation. In hypoxanthine.HCl.H2O a radical could be observed after X-irradiation at 77 K, which results from addition of a Cl- to the nitrogen N1.  相似文献   

8.
The reaction between NAD and histamine in the presence of purified bull semen nicotinamide adenine dinucleotide nucleosidase (NADase) was studied with respect to the rate of disappearance of the nicotinamide ribosidic linkage of NAD and the rate of the loss of one orcinol-positive ribose of NAD. It was observed that in the presence of this enzyme, 50% of the ribosidic linkage was hydrolyzed prior to any change in orcinol-positive ribose. A nonenzymatic reaction of the product of hydrolysis, adenosine diphosphoribose with histamine was observed to result in the loss of one orcinol-positive ribose. Similar nonenzymatic reactions of histamine were observed with ribose and ribose-5-phosphate. The data suggest that the bull semen NADase does not catalyze a transglycosidation reaction between NAD and histamine as had been claimed previously.  相似文献   

9.
Radiation-induced free radical formation in single crystals of guanine hydrochloride dihydrate has been studied at temperatures between 20 and 300 K using ESR and ENDOR spectroscopy. At low temperatures three radical species are trapped. Two of these are the C8 H-addition radical R1 previously analysed by Alexander and Gordy (1967) and the O6-protonated anion radical R2. The third species (R4) remains unidentified. Upon annealing at 280 K for an extended period the protonated anion R2 transforms into a new radical R3 which exhibit a well-defined hyperfine pattern but still could not be identified unambiguously. Also radical R4 probably transforms into a new radical (R5) upon such treatment. One proton coupling due to R5 was detected. A scheme of radical reactions incorporating these five radicals is proposed. This scheme also suggests that differences in radical formation between the monohydrate and dihydrate crystals of guanine hydrochloride depends upon differences in the hydrogen bonding network.  相似文献   

10.
A rapid and specific spectrophotometric assay for the determination of adenine is described. The method is based on the absorbance change at 265 nm which accompanies the ribose 1-phosphate-dependent conversion of adenine into inosine, catalyzed by the successive action of adenosine phosphorylase and adenosine deaminase. Common purine and pyrimidine bases, nucleosides, and nucleotides do not interfere. The assay was tested in various biochemical situations, in which there was both adenine formation and utilization.  相似文献   

11.
Four free radicals are trapped in methyl alpha-D-mannopyranoside X-irradiated and maintained at 77 K. All four have been identified, with high confidence levels, using ESR and ENDOR spectroscopy. One, an alkoxy radical located at O4, is characterized by a gmax of 2.059, an isotropic beta hydrogen hyperfine coupling (hfc) of 98 MHz, and small interactions due to gamma or delta hydrogens. The second, a secondary dioxyalkyl radical due to loss of hydrogen from C1 is characterized by one beta hfc with an isotropic component of 19.03 MHz. The third, a secondary hydroxyalkyl radical due to loss of hydrogen from C2 is characterized by two nonexchangeable hydrogens with isotropic beta interactions of 22.45 and 6.44 MHz and one exchangeable hydrogen with an isotropic beta interaction of 9.88 MHz. The fourth is a .CH2OR radical that is formed by the net loss of hydrogen from the methyl group.  相似文献   

12.
Single crystals of the free base of guanosine 5'-monophosphate were X-irradiated at 10 and at 65 K and investigated between these temperatures and room temperature using K-band ESR and ENDOR spectroscopy. Three free radicals were detected in this temperature range. Two of these were identified as the O6-protonated anion radical and the C8 H-addition radical. Both of these species were present immediately after irradiation at 10 K. The anion radical was formed in two slightly different conformations, of which one decayed at about 150 K and the second at about 250 K. No successor radicals could be detected following the decay of the anion radical. The C8 H-adduct was stable at all temperatures used. The use of partially deuterated crystals confirmed the assignments made and showed that the main pathway for the formation of the C8 H-adduct consisted of addition of a proton from an easily exchangeable site. It is suggested that the C8 H-adduct is formed subsequent to a primary oxidation event localized either at the guanine base or at a nearby water of crystallization. Possible mechanisms for the formation of this product are discussed.  相似文献   

13.
Adenosine plays an important role in protection of the heart before, during and after ischemia. Nucleoside transport inhibitors (NTI) increase adenosine concentration without inducing ischemia by preventing its uptake and metabolism in cardiac cells. However, prolonged effects of nucleoside transport inhibitors on adenosine and nucleotide metabolism and its combined effect with nucleotide precursors has not been established in cardiomyocytes. The aim of this study was to investigate the effect of two nucleoside transport inhibitors, dipyridamole (DIPY) and nitrobenzylthioinosine (NBTI) alone or combined with adenine and ribose on adenosine production and ATP content in cardiomyocytes.Rat cardiomyocytes were isolated using collagenase perfusion technique. Isolated cell suspensions were incubated for up to 480 min with different substrates and inhibitors as follows: (1) control; (2) 100 M adenine and 2.5 mM ribose; (3) 10 M DIPY; (4) 1 M NBTI; (5) DIPY, adenine and ribose and (6) NBTI, adenine and ribose. Five M EHNA (erythro-9(2-hydroxy-3-nonyl)adenine, an inhibitor of adenosine deaminase) was added to all incubations. After incubation, extracts of myocyte suspension were analysed by HPLC for adenine nucleotides and metabolite concentrations.ATP content decreased in cardiomyocytes after 8 h of incubation with DIPY, while no change was observed with NBTI or without inhibitors. Adenosine concentration increased with both DIPY and NBTI. In the presence of adenine and ribose an elevation in ATP concentration was observed, but no significant change in adenosine content. In the presence of DIPY or NBTI together with adenine and ribose, an enhancement in cardiomyocyte ATP concentration was observed together with an increase in adenosine content. This increase in adenosine production was especially prominent with DIPY.In conclusion, dipyridamole causes a decrease in ATP concentration in isolated cardiomyocytes by mechanisms other than nucleoside transport inhibition. Addition of adenine/ribose with dipyridamole prevents the depletion of ATP. Combination of adenine/ribose with nucleoside transport inhibitors may also further enhance adenosine concentration and thus, could be more effective as pharmacological agents for treatment.  相似文献   

14.
8-Methyladenosine 3'-monophosphate dihydrate was synthesized and crystallized in the monoclinic space group P21 with the unit cell dimensions: a = 9.095(2) A, b = 16.750(3) A, c = 5.405(2) A and beta = 97.61(3) degrees. The structure was determined by the application of the heavy atom method and refined to give a final R factor of 0.047. The pertinent conformations are as follows: the syn conformation about the glycosyl bond (chiCN = 216.8 degrees), the C(2')-endo sugar puckering with the displacement of 0.55 A; and the gauche-gauche conformation about the C(4')-C(5') bond capable of forming an intramolecular hydrogen bonding between N(3) of adenine base and O(5') of the hydroxymethylene group on the ribose. The molecule exists in the zwitterionic form with the N(1) of the adenine base protonated by a phosphate proton and is stabilized by three-dimensional networks of hydrogen bonding through the crystalline water molecules or directly between the adjacent nucleotide molecules; no base stacking was observed.  相似文献   

15.
The radicals produced by X-irradiation in L-phenylalanine.HCl crystals have been analysed by electron-spin-resonance (e.s.r.) spectroscopy. Four radicals have been identified: the radical resulting from electron capture by the carboxylic group, the radical resulting from deamination, an hydrogen addition radical to the benzene ring, and the radical resulting from hydrogen abstraction from the methylene group bonded to Cbeta. These identifications are supported by INDO calculations.  相似文献   

16.
By monitoring the in vivo incorporation of low concentrations of radiolabeled adenine into acid-soluble compounds, we observed the unusual accumulation of two nucleosides in Saccharomyces cerevisiae that were previously considered products of nucleotide degradation. Under the culture conditions used in the present study, radiolabeled adenosine was the major acid-soluble intracellular derivative, and radiolabeled inosine was initially detected as the second most prevalent derivative in a mutant lacking adenine aminohydrolase. The use of yeast mutants defective in the conversion of adenine to hypoxanthine or to AMP renders very unlikely the possibility that the presence of adenosine and inosine is attributable to nucleotide degradation. These data can be explained by postulating the existence of two enzyme activities not previously reported in S. cerevisiae. The first of these activities transfers ribose to the purine ring and may be attributable to purine nucleoside phosphorylase (EC 2.4.2.1) or adenosine phosphorylase (EC 2.4.2.-). The second enzyme converts adenosine to inosine and in all likelihood is adenosine aminohydrolase (EC 3.5.4.4).  相似文献   

17.
2'-Amino-2'-deoxyadenosine and 2'-chloro-2'-deoxycoformycin (2'-CldCF) are two nucleoside antibiotics produced by Actinomadura. The biosynthesis of these two nucleoside antibiotics has been studied by the addition of [U-14C]adenosine with or without unlabeled adenine to cultures of Actinomadura. By this experimental approach, it is possible to demonstrate that adenosine is the direct precursor for the biosynthesis of 2'-amino-2'-deoxyadenosine and 2'-CldCF. These conclusions are based on the observation that the percentage distribution of 14C in the aglyconic and pentofuranosyl moieties of 2'-amino-2'-deoxyadenosine and 2'-CldCF were similar to the distribution of 14C in the adenine and ribosyl moieties of the [U-14C]adenosine (i.e., 48:52) added to cultures of Actinomadura. Experimentally, the percentage distribution of 14C in the (i) adenine:2-amino-2-deoxy-beta-D-ribofuranose of 2'-amino-2'-deoxyadenosine is 51:49; (ii) 8-(R)-3,6,7,8-tetrahydroimidazo[4,5-d]-[1,3-diazepin-8-o1]:2 -chloro-2- beta-D-ribofuranose of 2'-CldCF is 45:55; and (iii) adenine:ribose of the adenosine isolated from the RNA of Actinomadura is 42:58. Further proof that adenosine is the direct precursor for the biosynthesis 2'-amino-2'-deoxyadenosine and 2'-CldCF was demonstrated by the addition of 75 mumol of unlabeled adenine together with [U-14C]adenosine to nucleoside-producing cultures of Actinomadura. The percentage distribution of 14C in the aglycon and the sugar moieties of 2'-amino-2'-deoxyadenosine and 2'-CldCF were 46:54 and 47:53, respectively; the percentage distribution of 14C in the adenine and ribose moieties of the adenosine isolated from the RNA of Actinomadura was 51:49. These data show that the hydroxyl on C-2' of the ribosyl moiety of adenosine undergoes a replacement by a 2'-amino or a 2'-chloro group to form 2'-amino-2'-deoxyadenosine or 2'-CldCF with retention of stereconfiguration at C-2'. Finally, Actinomadura can utilize inorganic chloride from the medium as demonstrated by the isolation of [36Cl]2'-CldCF following the addition of [36Cl]chloride to the culture medium. Mechanisms for the regioselective modification of the C-2' hydroxyl group and stereospecific insertion of the amino and chloro groups are discussed.  相似文献   

18.
Single crystals of guanine hydrobromide monohydrate, in which the guanine base is protonated at N7, were X-irradiated at 8 and 65 K. Using K-band ESR, ENDOR, and field-swept-ENDOR (FSE) techniques, the crystals were studied between 8 K and room temperature. There was evidence for five different radicals, RI-RV, immediately following irradiation at 8 or 65 K. RI was identified as the O6-protonated anion. It decayed near room temperature with no detectable successor. RII was identified as the N7-deprotonated cation, and decayed near 130 K. RIII is thought to be a ring-opened product formed by C8-N9 bond rupture; upon warming, it decayed at 150 K. RIV is the well-known C8 H-addition radical. These four radicals have been observed previously in the hydrochloride salt of guanine monohydrate. RV is novel, however, with magnetic characteristics consistent with those of the product formed by net OH addition to C5 of the unsaturated C4-C5 bond. It is characterized by four alpha-proton couplings indicating pi-electron spin as follows: 13% at C8; 11% at N7; and 12% at N10. RV decayed between 240 and 255 K with no detectable successor. Upon further warming, very weak resonance lines due to additional, unidentified radicals were observed. A comparison of these results with those obtained from other systems containing N7-protonated guanine bases demonstrates the effect of the environment on the primary radical formation.  相似文献   

19.
X-irradiation of single crystals of 5-iododeoxyuridine (IUdR) in the temperature range 8-300 K produces mainly four different radicals which have been studied by electron spin resonance (e.s.r.) and electron nuclear double resonance (ENDOR)-spectroscopy. At low temperatures, a pi-anion is formed which shows predominantly an interaction of the unpaired electron with a proton at carbon C6 of the base (-11.8 G, -23.9 G, -4.6 G). Above 10-20 K, the anion protonates at C6 to yield a RC-I(CH2)-R' radical comprising alpha-iodo and beta-methylene proton hyperfine interactions. The primary oxidation product is an O5'-situated alkoxy radical RCH2O which shows inequivalent beta-proton couplings of about 100 G and 35 G together with a highly anisotropic g-tensor. Upon warming to 265 K, a C2'-located radical on the deoxyribose is formed which is stable at room temperature. A detailed account of its spectral features as obtained by ENDOR exhibits three different alpha-type couplings, two small beta-protons and a dipolar interaction. Other radicals, not reproducibly observed, involve a C5'-hydroxyalkyl radical and a species related to the base cation at low temperatures.  相似文献   

20.
Radicals produced by X-irradiation at 77 K and at 300 K of cytosine. HCl crystals have been analysed by electron spin resonance spectroscopy. Four radicals have been identified: the anion radical of the cytosine molecule, the radical resulting from H-addition at position C6, the radical resulting from H-addition at position O2, and finally a radical resulting from addition of a Cl- to nitrogen N3. Hückel molecular orbital calculations are presented, which support the hypothesis according to which in unsaturated pyrimidines the site of hydrogenation or protonation depends on the state of the molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号