首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Structure of the human neutrophil elastase gene   总被引:14,自引:0,他引:14  
The gene for human neutrophil elastase (NE), a powerful serine protease carried by blood neutrophils and capable of destroying most connective tissue proteins, was cloned from a genomic DNA library of a normal individual. The NE gene consists of 5 exons and 4 introns included in a single copy 4-kilobase segment of chromosome 11 at q14. The coding exons of the NE gene predict a primary translation product of 267 residues including a 29-residue N-terminal precursor peptide and a 20-residue C-terminal precursor peptide. Analysis of the N-terminal peptide sequence suggests it contains a 27-residue "pre" signal peptide followed by a "proN" dipeptide, similar to that of other blood cell lysosomal proteases. The sequences for the mature 218-residue NE protein are included in exons II-V. The 5'-flanking region of the gene includes typical TATA, CAAT, and GC sequences within 61 base pairs (bp) of the cap site. The sequence 1.5 kilobases 5' to exon I contains several interesting repetitive sequences including six tandem repeats of unique 52- or 53-bp sequences. The 5'-flanking region also contains a 19-bp segment with 90% homology to a segment of the 5'-flanking region of the human myeloperoxidase (MPO) gene, a gene also expressed in bone marrow precursor cells and a protein stored in the same neutrophil granules as NE. In addition, like the MPO gene, the NE 5'-flanking region has several regions with greater than or equal to 75% homology to sequences 5' to c-myc, but there is no overlap between the NE-c-myc and MPO-c-myc homologous sequences.  相似文献   

2.
Elastase is a proteolytic enzyme belonging to the family of hydrolases produced by human neutrophils, monocytes, macrophages, and endothelial cells. Human neutrophil elastase is known to play multiple roles in the human body, but an increase in its activity may cause a variety of diseases. Elastase inhibitors may prevent the development of psoriasis, chronic kidney disease, respiratory disorders (including COVID-19), immune disorders, and even cancers. Among polyphenolic compounds, some flavonoids and their derivatives, which are mostly found in herbal plants, have been revealed to influence elastase release and its action on human cells. This review focuses on elastase inhibitors that have been discovered from natural sources and are biochemically characterised as flavonoids. The inhibitory activity on elastase is a characteristic of flavonoid aglycones and their glycoside and methylated, acetylated and hydroxylated derivatives. The presented analysis of structure–activity relationship (SAR) enables the determination of the chemical groups responsible for evoking an inhibitory effect on elastase. Further study especially of the in vivo efficacy and safety of the described natural compounds is of interest in order to gain better understanding of their health-promoting potential.  相似文献   

3.
Herein, we describe the synthesis and resulting activity of a complex series of α-aminophosphonate diaryl esters as irreversible human neutrophil elastase inhibitors and their selectivity preference for human neutrophil elastase over several other serine proteases such as porcine pancreatic elastase, trypsin, and chymotrypsin. We synthesized and examined the inhibitory potency of several new simple Cbz-protected α-aminoalkylphosphonate diaryl esters that yielded several new HNE inhibitors, where one of the obtained compounds Cbz-ValP(OC6H4-4-COOMe)2 displayed an apparent second-order inhibition value at 33,015 M−1 s−1.  相似文献   

4.
Compounds that can effectively inhibit the proteolytic activity of human neutrophil elastase (HNE) represent promising therapeutics for treatment of inflammatory diseases. We present here the synthesis, structure–activity relationship analysis, and biological evaluation of a new series of HNE inhibitors with a cinnoline scaffold. These compounds exhibited HNE inhibitory activity but had lower potency compared to N-benzoylindazoles previously reported by us. On the other hand, they exhibited increased stability in aqueous solution. The most potent compound, 18a, had a good balance between HNE inhibitory activity (IC50 value?=?56?nM) and chemical stability (t1/2?=?114?min). Analysis of reaction kinetics revealed that these cinnoline derivatives were reversible competitive inhibitors of HNE. Furthermore, molecular docking studies of the active products into the HNE binding site revealed two types of HNE inhibitors: molecules with cinnolin-4(1H)-one scaffold, which were attacked by the HNE Ser195 hydroxyl group at the amido moiety, and cinnoline derivatives containing an ester function at C-4, which is the point of attack of Ser195.  相似文献   

5.
Degradation of plasmodial antigens by human neutrophil elastase   总被引:1,自引:0,他引:1  
Human neutrophil elastase (HNE) has been well-studied with respect to its role in pathologic states, but less is known about the physiologic functions of this important granulocyte enzyme. In the present study, we show that HNE can degrade the major circumsporozoite protein of the infective (sporozoite) stage of Plasmodium vivax malaria, and that this enzyme can also interfere with the cytoadherence of human E infected with Plasmodium falciparum (strain K+ FMG-FCR3) (IE). Cytoadherence reactions are not only blocked by treatment of IE with as little as 10 fg HNE/IE, but already adherent IE are also removed by the enzyme. Normal E surface Ag are not extensively destroyed by these doses of HNE. This suggests that the effect of HNE on cytoadherence is selective and probably due to degradation of the malarial Ag exported to the IE surface and responsible for the formation of "recognition knobs" upon which the cytoadherence reaction depends. This conclusion, in turn, was supported by the results of Western blot analysis showing that HNE degrades a high m.w. Ag found exclusively in membrane extracts of IE. Our results suggest that one physiologic role of HNE may be degradation of parasitic antigens during host defense against malaria.  相似文献   

6.
Human neutrophil elastase (HNE) is a serine protease that has been implicated in the abnormal turnover of connective tissue proteins and has been described as an important pathogenic factor in several inflammatory diseases such as rheumatoid arthritis or cystic fibrosis. Here we investigated 17 sesquiterpene lactones (SLs) for their ability to inhibit human neutrophil elastase in an in vitro assay. Podachaenin was the most active compound with an IC(50) value of 7 microM. SLs do not covalently bind to the amino acids of the catalytic triad, thus differing from other elastase inhibitors with a lactone moiety. In contrast to most other biological activities of SLs HNE inhibition is not mediated by alpha,beta-unsaturated carbonyl functions. Ligand binding calculations using the X-ray structure of HNE and the program FlexX revealed structural elements which are a prerequisite for their inhibitory activity.  相似文献   

7.
Here we present a simple and rapid method for the construction of phosphonic peptide mimetic inhibitor libraries-products of Ugi and Passerini multicomponent condensations-leading to the selection of new biologically active phosphonic pseudopeptides. As the starting isonitriles, 1-isocyanoalkylphosphonate diaryl ester derivatives were applied. The structure of the synthesized inhibitors was designed to target human neutrophil elastase, a serine protease whose uncontrolled activity may lead to development of several pathophysiological states such as rheumatoid arthritis, cystic fibrosis or tumor growth and invasion. After screening the inhibitory activity of our constructed libraries, the most active compounds were synthesized as single molecules. One of the obtained inhibitors, Cbz-Met-O-Met-Val(P)(OC(6)H(4)-p-Cl)(2), displayed apparent second-order inhibition value at 40,105M(-1)s(-1) as the diastereomers mixture. Inhibition potency and selectivity of action toward other serine proteases as well as the results of initial in vitro experiments regarding inhibitors influence on cancer cell proliferation are presented.  相似文献   

8.
Mutations in ELA2, the gene encoding neutrophil elastase (NE), cause the human diseases cyclic neutropenia (CN) and severe congenital neutropenia (SCN). Numerous mutations are known, but their lack of consistent biochemical effect has proven puzzling. The recent finding that mutation of AP3B1, which encodes the beta subunit of adaptor protein complex 3 (AP3), is the cause of canine CN suggests a model for the molecular basis of hereditary neutropenias, involving the mistrafficking of NE: AP3 recognizes NE as a cargo protein, and their interaction implies that NE is a transmembrane protein. Computerized algorithms predict two NE transmembrane domains. Most CN mutations fall within predicted transmembrane domains and lead to excessive deposition of NE in granules, whereas SCN mutations usually disrupt the AP3 recognition sequence, resulting in excessive transport to the plasma membrane.  相似文献   

9.
SC-39026, (+/-) 2-chloro-4-(1-hydroxyoctadecyl)benzoic acid, inhibits human neutrophil elastase with an IC50 of 0.5 microM (KI of 1.5 microM). Its inhibition of elastase is reversible and noncompetitive at low concentrations (0.5-1.25 microM). Inhibition is "mixed" at higher inhibitor concentrations. SC-39026 is inactive against hog pancreatic elastase, bovine alpha-chymotrypsin and Pseudomonas aeruginosa elastase, but does inhibit human neutrophil cathepsin G with an IC50 of approximately 2.5 microM. Neutrophil elastases isolated from rat, hamster, rabbit and hog are also inhibited by SC-39026.  相似文献   

10.
In this report, the susceptibility of type VIII collagen to human neutrophil elastase is compared to other extracellular matrix components. Type X collagen is degraded to specific fragments at a substrate to enzyme ratio of 5:1 after 20 h at room temperature, but type VIII collagen is almost completely degraded after only 4 h incubation at a substrate to enzyme ratio of 50:1 and partly degraded after only 15 min. Laminin, merosin and types I, III, IV and V collagen exhibit no susceptibility to neutrophil elastase under the latter conditions, while fibronectin is degraded.  相似文献   

11.
Described are the acylation binding of trans-lactam 1 to porcine pancreatic elastase, the selection of the SO2Me activating group for the lactam N which also confers metabolic stability in hamster liver microsomes, the introduction of aqueous solubility through the piperidine salt 9, the in vivo oral activity of 9 and its bioavailability, and the introduction of 9 as an intracellular neutrophil elastase inhibitor.  相似文献   

12.
Proteinase inhibitor PI9 (PI9) is an intracellular 42-kDa member of the ovalbumin family of serpins that is found primarily in placenta, lung and lymphocytes. PI9 has been shown to be a fast-acting inhibitor of granzyme B in vitro, presumably through the utilization of Glu(340) as the P(1) inhibitory residue in its reactive site loop. In this report, we describe the inhibition of human neutrophil elastase by recombinant human PI9. Inhibition occurred with an overall K(i)' of 221 pM and a second-order association rate constant of 1.5 x 10(5) M(-1) s(-1), indicating that PI9 is a potent inhibitor of this serine proteinase in vitro. In addition, incubation of recombinant PI9 with native neutrophil elastase resulted in the formation of an SDS-resistant 62-kDa complex. Amino-terminal sequence analyses provided evidence that inhibition of elastase occurred through the use of Cys(342) as the reactive P(1) amino acid residue in the PI9 reactive site loop. Thus, PI9 joins its close relatives PI6 and PI8 as having the ability to utilize multiple reactive site loop residues as the inhibitory P(1) residue to expand its inhibitory spectrum.  相似文献   

13.
Spencer JL  Stone PJ  Nugent MA 《Biochemistry》2006,45(30):9104-9120
In the normal feedback mechanism of injury and repair in the lung, fragmented heparan sulfate proteoglycans (HSPGs) from damaged extracellular matrix and cells are believed to interact with elastases to limit their activity. An imbalance in the HSPG-elastase response may play an important role in situations where uncontrolled lung injury leads to diseases such as emphysema. To gain insight into this complex process of heparin and heparan sulfate regulation of elastases, an experimental study was undertaken to resolve the mechanism and structural requirements of heparin inhibition of human neutrophil elastase (HNE). Kinetic analyses were completed using in vitro assays with synthetic and insoluble elastin substrates in the presence of HNE and various heparin preparations (14-15 kDa; 17-19 kDa), heparin-derived oligosaccharides (4-22 saccharides), and chemically modified heparins (2-O-, 6-O-, O-, and N-desulfated). Results showed that heparin inhibits HNE by a tight-binding, hyperbolic, competitive mechanism, contrary to previous reports in the literature. A minimum length of at least 12-14 saccharides is required for inhibition, after which inhibitory activity increases with chain length (or molecular mass). Although all N- and O-sulfate groups contribute to inhibition, 2-O-sulfate groups are less critical than either N- or 6-O-sulfate groups, indicating that inhibitory activity is dependent upon the heparin fine structure. Molecular-docking simulations support the kinetic results and provide a plausible model for the size requirement, whereby positively charged, clamp-like regions at the ends of the interdomain crevice (elastase fold) are used by heparin to bridge the active site and inhibit activity.  相似文献   

14.
Solid-phase immunoassay of dog neutrophil elastase   总被引:6,自引:0,他引:6  
A sensitive and reliable method has been developed for the detection of dog neutrophil elastase using the amplified enzyme-linked immunosorbent assay. Purified neutrophil enzyme, inactivated by diisopropylfluorophosphate was adsorbed noncovalently to polystyrene tubes (11 × 55 mm) and immune rabbit serum was allowed to bind to antigen-sensitized tubes. Bound specific antibody was visualized by goat antirabbit immunoglobulin covalently lined to alkaline phosphatase, using p-nitrophenyl phosphate as the substrate. Increasing amounts of purified neutrophil enzyme or crude leukocyte extracts were quantitated by their ability to inhibit specific antibody uptake to polystyrene tubes. By this method, as little as 1 ng of enzyme/ml could be detected with a useful range of 5–100 ng of enzyme levels. Immunoreactive enzyme in a crude leukocyte extract was comparable to the quantily of enzyme as measured by proteolytic activity. The method described can be conveniently used to measure levels of immunoreactive enzymes in biological fluids of animals, with experimentally induced inflammatory conditions.  相似文献   

15.
To identify new orally active inhibitors, further modification of 1 (ONO-6818) was performed. Peptidic derivatives 4b, 4c and 4n showed more potent inhibitory activity than nonpeptidic derivatives 3a-c. As a result, a series of peptidic inhibitors, 4a-s and 5a-v, were discovered. Among these N-aryl derivatives 5a-g, 5i, 5m and 5o-v showed oral activity. Their oral activity showed good correlation with their metabolic stability. Compounds 5h and 5j-l, which were extremely metabolically unstable in hamster plasma, did not show oral activity. Oral activity was considered to be determined by a combination of at least two factors: oral absorption and metabolic stability.  相似文献   

16.
Human leukocyte elastase has been crystallized in complex with recombinant Pro44-eglin c in the orthorhombic space group P2(1)2(1)2(1). The cell constants are a = 126.1 A, b = 127.8 A, c = 69.4 A, alpha = beta = gamma = 90 degrees. The crystals diffract to at least 2.5 A resolution and are suitable for crystallographic structure analysis.  相似文献   

17.
Human neutrophil elastase (HNE) was analyzed for protein(s), antibody staining and activity staining, on lithium dodecyl sulfate (LDS) polyacrylamide gel electrophoresis followed by Western blotting. The HNE activity, which was identified with N-acetyl-D,L-alanine alpha-naphthyl ester as substrate, was well preserved in the presence of 0.1% LDS at 4 C during electrophoresis. As little as 0.1 microgram HNE was required for the activity staining. The HNE appeared to be three peptides having a major band at mass ratio 27,000, a second major band at mass ratio 28,000 with a minor protein band at mass ratio 29,000. On transfer to nitrocellulose, the mass ratio 28,000 band displayed poor immunoreactivity. This was the second most dense band with highest enzymatic staining. This procedure is a useful method and analytical tool to determine the correlation of enzymatically active proteins, subunits and immunoreactive protein(s) of elastase from various sources, including neutrophils.  相似文献   

18.
Free radicals produced in a Fenton reaction (H202/Cu), modelling some xenobiotic and cell-mediated inflammatory affronts, efficiently inactivated the elastase-inhibitor eglin, but equally, human neutrophil elastase itself. Elastase activity was not regenerated from proteinase/inhibitor complexes during radical attack. Three different elastase inhibitors, eglin, secretory leukocyte proteinase inhibitor and alpha-1-proteinase inhibitor were all similarly sensitive to inactivation. Unlike certain oxidants which can selectively inactivate alpha-1-proteinase inhibitor, free radicals may influence comparably the availability of both proteinase inhibitors and their targets.  相似文献   

19.
We report the synthesis and enzymatic studies on a new proteinase 3 intermolecular quenched substrate with enhanced selectivity over neutrophil elastase. Using combinatorial chemistry methods, we were able to synthesize the hexapeptide library with the general formula ABZ-Tyr-Tyr-Abu-X1′-X2′-X3′-Tyr(3-NO2)-NH2 using the mix and split method. The iterative deconvolution of such a library allowed us to obtain the sequence ABZ-Tyr-Tyr-Abu-Asn-Glu-Pro-Tyr(3-NO2)-NH2 with a high specificity constant (kcat/KM = 1534 × 103 M−1 s−1) and superior selectivity over neutrophil elastase and other neutrophil-derived serine proteases. Moreover, using the obtained substrate, we were able to detect a picomolar concentration of proteinase 3 (PR3). Incubation of the above-mentioned substrate with neutrophil lysate resulted in a strong fluorescent signal that was significantly reduced in the presence of a PR3 selective inhibitor.  相似文献   

20.
Five iridoid glycosides were isolated from the MeOH extract of Hedyotis diffusa, and their structures were elucidated as E-6-O-p-methoxycinnamoyl scandoside methyl ester (1), Z-6-O-p-methoxycinnamoyl scandoside methyl ester (2), E-6-O-p-feruloyl scandoside methyl ester (3), E-6-O-p-coumaroyl scandoside methyl ester (4), and Z-6-O-p-coumaroyl scandoside methyl ester (5) by interpretation of their spectroscopic data. All the isolated compounds were evaluated for human neutrophil elastase inhibitory effect, and compound 1 showed potent activity with an IC50 value of 18.0 μM. The molecular docking simulation suggested a structural model for the inhibition of human neutrophil elastase by compound 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号