首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The pan Bcl-2 family antagonist Obatoclax (GX15-070), currently in clinical trials, was shown to sensitize TRAIL-resistant tumors to TRAIL-mediated apoptosis via the release of Bak and Bim from Mcl-1 or Bcl-2/Bcl-XL complexes or by the activation of Bax, though other mechanisms were not examined. Herein, we hypothesize that Obatoclax-mediated sensitization to TRAIL apoptosis may also result from alterations of the apoptotic pathways. The TRAIL-resistant B-cell line Ramos was used as a model for investigation. Treatment of Ramos cells with obatoclax significantly inhibited the expression of several members of the Bcl-2 family, dissociated Bak from Mcl-1 and inhibited the NFκB activity. Cells treated with Mcl-1 siRNA were sensitized to TRAIL apoptosis. We examined whether the sensitization of Ramos to TRAIL by Obatoclax resulted from signaling of the DR4 and/or DR5. Transfection with DR5 siRNA, but not with DR4 siRNA, sensitized the cells to apoptosis following treatment with Obatoclax and TRAIL. The signaling via DR5 correlated with Obatoclax-induced inhibition of the DR5 repressor Yin Yang 1 (YY1). Transfection with YY1 siRNA sensitized the cells to TRAIL apoptosis following treatment with Obatoclax and TRAIL. Overall, the present findings reveal a new mechanism of Obatoclax-induced sensitization to TRAIL apoptosis and the involvement of the inhibition of NFκB activity and downstream Mcl-1 and YY1 expressions and activities.Key words: Obatoclax, TRAIL, YY1, DR5, lymphoma, immunosensitization  相似文献   

3.
Sensitivity to TNF-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis and the lysosomal pathway of cell death are features of cancer cells. However, it is unknown if TRAIL cytotoxic signaling engages the lysosomal pathway of cell death. Our aim, therefore, was to ascertain if TRAIL killing involves lysosomal permeabilization. TRAIL-induced apoptosis of hepatocellular carcinoma cells (HuH-7, Hep3B) was associated with lysosomal permeabilization, as demonstrated by redistribution of the lysosomal protease cathepsin B into the cytosol. Pharmacological and short hairpin RNA-targeted inhibition of cathepsin B reduced apoptosis. Because cellular FLICE-inhibitory protein (cFLIP) inhibits TRAIL-induced cell death and is frequently overexpressed by human cancers, the ability of cFLIP to prevent lysosomal permeabilization during TRAIL treatment was examined. Enforced long-form cFLIP (cFLIP(L)) expression reduced release of cathepsin B from lysosomes and attenuated apoptosis. cFLIP(L) overexpression was also associated with robust p42/44 MAPK activation following exposure to TRAIL. In contrast, cFLIP(L) overexpression attenuated p38 MAPK activation and had no significant effect on JNK and NF-kappaB activation. Inhibition of p42/44 MAPK by PD98059 restored TRAIL-mediated lysosomal permeabilization and apoptosis in cFLIP-overexpressing cells. In conclusion, these results demonstrate that lysosomal permeabilization contributes to TRAIL-induced apoptosis of hepatocellular carcinoma cells and suggest that cFLIP(L) cytoprotection is, in part, due to p42/44 MAPK-dependent inhibition of lysosomal breakdown.  相似文献   

4.
TNF-related apoptosis-inducing ligand (TRAIL) is a pro-apoptotic ligand from the TNF-alpha family that is under consideration, along with agonistic anti-TRAIL receptor antibodies, as a potential anti-tumor agent. However, most primary human tumors are resistant to monotherapy with TRAIL apoptogens, and thus the potential applicability of TRAIL in anti-tumor therapy ultimately depends on its rational combination with drugs targeting these resistances. In our high-throughput screening for novel agents/drugs that could sensitize TRAIL-resistant colorectal cancer cells to TRAIL-induced apoptosis, we found homoharringtonine (HHT), a cephalotaxus alkaloid and tested anti-leukemia drug, to be a very effective, low nanomolar enhancer of TRAIL-mediated apoptosis/growth suppression of these resistant cells. Co-treatment of TRAIL-resistant RKO or HT-29 cells with HHT and TRAIL led to the effective induction of apoptosis and the complete elimination of the treated cells. HHT suppressed the expression of the anti-apoptotic proteins Mcl-1 and cFLIP and enhanced the TRAIL-triggered activation of JNK and p38 kinases. The shRNA-mediated down-regulation of cFLIP or Mcl-1 in HT-29 or RKO cells variably enhanced their TRAIL-induced apoptosis but it did not markedly sensitize them to TRAIL-mediated growth suppression. However, with the notable exception of RKO/sh cFLIP cells, the downregulation of cFLIP or Mcl-1 significantly lowered the effective concentration of HHT in HHT + TRAIL co-treatment. Combined HHT + TRAIL therapy also led to the strong suppression of HT-29 tumors implanted into immunodeficient mice. Thus, HHT represents a very efficient enhancer of TRAIL-induced apoptosis with potential application in TRAIL-based, anti-cancer combination therapy.  相似文献   

5.
6.
Thioridazine has been known as an antipsychotic agent, but it also has anticancer activity. However, the effect of thioridazine on tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) sensitization has not yet been studied. Here, we investigated the ability of thioridazine to sensitize TRAIL-mediated apoptosis. Combined treatment with thioridazine and TRAIL markedly induced apoptosis in various human carcinoma cells, including renal carcinoma (Caki, ACHN, and A498), breast carcinoma (MDA-MB231), and glioma (U251MG) cells, but not in normal mouse kidney cells (TMCK-1) and human normal mesangial cells. We found that thioridazine downregulated c-FLIP(L) and Mcl-1 expression at the post-translational level via an increase in proteasome activity. The overexpression of c-FLIP(L) and Mcl-1 overcame thioridazine plus TRAIL-induced apoptosis. We further observed that thioridazine inhibited the Akt signaling pathway. In contrast, although other phosphatidylinositol-3-kinase/Akt inhibitors (LY294002 and wortmannin) sensitized TRAIL-mediated apoptosis, c-FLIP(L) and Mcl-1 expressions were not altered. Furthermore, thioridazine increased the production of reactive oxygen species (ROS) in Caki cells, and ROS scavengers (N-acetylcysteine, glutathione ethyl ester, and trolox) inhibited thioridazine plus TRAIL-induced apoptosis, as well as Akt inhibition and the downregulation of c-FLIP(L) and Mcl-1. Collectively, our study demonstrates that thioridazine enhances TRAIL-mediated apoptosis via the ROS-mediated inhibition of Akt signaling and the downregulation of c-FLIP(L) and Mcl-1 at the post-translational level.  相似文献   

7.
8.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent that can selectively kill cancer cells. Nonetheless, many cancers are resistant to TRAIL, and the molecular mechanisms of TRAIL resistance in cancer, particularly pancreatic cancer, are still unclear. In this study, we tested the hypothesis that quercetin, a flavonoid, induces apoptosis in TRAIL-resistant pancreatic cancer cells. Although quercetin alone had no significant cytotoxic effect, when combined with TRAIL, it promoted TRAIL-induced apoptosis that required mitochondrial outer membrane permeabilization. A BH3-only protein BID knockdown dramatically attenuated TRAIL/quercetin-induced apoptosis. The expression levels of cellular FLICE-like inhibitory protein (cFLIP) decreased in a dose-dependent manner in the presence of quercetin, and overexpression of cFLIP was able to robustly rescue pancreatic cancer cells from TRAIL/quercetin-induced apoptosis. Additionally, quercetin activated c-Jun N-terminal kinase (JNK) in a dose-dependent manner, which in turn induced the proteasomal degradation of cFLIP, and JNK activation also sensitized pancreatic cancer cells to TRAIL-induced apoptosis. Thus, our results suggest that quercetin induces TRAIL-induced apoptosis via JNK activation-mediated cFLIP turnover.  相似文献   

9.
The tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL/APO2L) is a member of the TNF gene superfamily that induces apoptosis upon engagement of cognate death receptors. While TRAIL is relatively non-toxic to normal cells, it selectively induces apoptosis in many transformed cells. Nevertheless, breast tumor cells are particularly resistant to the effects of TRAIL. Here we report that, in combination with the cyclin-dependent kinase inhibitor roscovitine, exposure to TRAIL induced marked apoptosis in the majority of TRAIL-resistant breast cancer cell lines examined. Roscovitine facilitated TRAIL death-inducing signaling complex formation and the activation of caspase-8. The cFLIP(L) and cFLIP(S) FLICE-inhibitory proteins were significantly down-regulated following exposure to roscovitine and, indeed, the knockdown of cFLIP isoforms by siRNA sensitized breast tumor cells to TRAIL-induced apoptosis. In addition, we demonstrate that roscovitine strongly suppressed Mcl-1 expression and up-regulated E2F1 protein levels in breast tumor cells. Significantly, the silencing of Mcl-1 by siRNA sensitized breast tumor cells to TRAIL-induced apoptosis. Furthermore, the knockdown of E2F1 protein by siRNA reduced the sensitizing effect of roscovitine in TRAIL-induced apoptosis. In summary, our results reveal a pleitropic mechanism for the pro-apoptotic influence of roscovitine, highlighting its potential as an antitumor agent in breast cancer in combination with TRAIL.  相似文献   

10.

Aims

Neobavaisoflavone (NBIF), an isoflavone isolated from Psoralea corylifolia (Leguminosae), has striking anti-inflammatory and anti-cancer effects. NBIF inhibits the proliferation of prostate cancer in vitro and in vivo.

Main methods

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a key endogenous molecule that selectively induces apoptosis in cancer cells with little or no toxicity in normal cells. However, some cancer cells, including U373MG cells, are resistant to TRAIL-mediated apoptosis. We demonstrated that the cell viability, migration and invasion assay were used in U373MG glioma cells.

Key findings

In this study, we found that NBIF sensitizes human U373MG glioma cells to TRAIL-mediated apoptosis. Co-treatment of TRAIL and NBIF effectively induced Bid cleavage and activated caspases 3, 8, and 9. Importantly, DR5 expression was upregulated by NBIF. We also observed that the combination NBIF and TRAIL increased expression of BAX. We further demonstrate that NBIF induced TRAIL-mediated apoptosis in human glioma cells by suppressing migration and invasion, and by inhibiting anoikis resistance.

Significance

Taken together, our results suggest that NBIF reduces the resistance of cancer cells to TRAIL and that the combination of NBIF and TRAIL may be a new therapeutic strategy for treating TRAIL-resistant glioma cells.  相似文献   

11.
Sanguinarine is a benzophenanthridine alkaloid derived from the root of Sanguinaria canadensis and other poppy-fumaria species, possessing potent antibacterial, antifungal, and anti-inflammatory activities. In this study, we investigated the underling mechanisms by which sanguinarine induce apoptosis in human breast cancer MDA-231 cells. Treatment of MDA-231 cells with sanguinarine induced remarkable apoptosis accompanying the generation of ROS. Consistently, sanguinarine-induced apoptosis was mediated by the increased reproductive cell death. Pretreatment with NAC or GSH attenuated sanguinarine-induced apoptosis, suggesting the involvement of ROS in this cell death. During sanguinarin-induced apoptosis, protein levels of pro-caspase-3, Bcl-2, cIAP2, XIAP, and c-FLIPs were reduced. Sanguinarine-mediated apoptosis was substantially blocked by ectopic expression of Bcl-2 and cFLIPs. Additionally, we found that sub-lethal doses of sanguinarine remarkably sensitized breast cancer cells to TRAIL-mediated apoptosis, but the cell death induced by sanguinarine and TRAIL in combination was not blocked by overexpression of Bcl-2 or Akt. Therefore, combinatory treatment of sanguinarine and TRAIL may overcome the resistance of breast cancer cells due to overexpression of Akt or Bcl-2.  相似文献   

12.
Bile acids induce hepatocyte injury by enhancing death receptor-mediated apoptosis. In this study, bile acid effects on TRAIL-mediated apoptosis were examined to gain insight into bile acid potentiation of death receptor signaling. TRAIL-induced apoptosis of HuH-7 cells, stably transfected with a bile acid transporter, was enhanced by bile acids. Caspase 8 and 10 activation, bid cleavage, cytosolic cytochrome c, and caspase 3 activation by TRAIL were all increased by the bile acid glycochenodeoxycholate (GCDCA). GCDCA (100 microm) did not alter expression of TRAIL-R1/DR4, TRAIL-R2/DR5, procaspase 8, cFLIP-L, cFLIP-s, Bax, Bcl-xL, or Bax. However, both caspase 8 and caspase 10 recruitment and processing within the TRAIL death-inducing signaling complex (DISC) were greater in GCDCA-treated cells whereas recruitment of cFLIP long and short was reduced. GCDCA stimulated phosphorylation of both cFLIP isoforms, which was associated with decreased binding to GST-FADD. The protein kinase C antagonist chelerythrine prevented bile acid-stimulated cFLIP-L and -s phosphorylation, restored cFLIP binding to GST-FADD, and attenuated bile acid potentiation of TRAIL-induced apoptosis. These results provide new insights into the mechanisms of bile acid cytotoxicity and the proapoptotic effects of cFLIP phosphorylation in TRAIL signaling.  相似文献   

13.
The caspase 8 homologue FLICE-inhibitory protein (cFLIP) is a potent negative regulator of death receptor-induced apoptosis. We found that cFLIP can be upregulated in some cell lines under critical involvement of the NF-kappaB pathway, but NF-kappaB activation was clearly not sufficient for cFLIP induction in all cell lines. Treatment of SV80 cells with the proteasome inhibitor N-benzoyloxycarbonyl (Z)-Leu-Leu-leucinal (MG-132) or geldanamycin, a drug interfering with tumor necrosis factor (TNF)-induced NF-kappaB activation, inhibited TNF-induced upregulation of cFLIP. Overexpression of a nondegradable IkappaBalpha mutant (IkappaBalpha-SR) or lack of IkappaB kinase gamma expression completely prevented phorbol myristate acetate-induced upregulation of cFLIP mRNA in Jurkat cells. These data point to an important role for NF-kappaB in the regulation of the cFLIP gene. SV80 cells normally show resistance to TNF-related apoptosis-inducing ligand (TRAIL) and TNF, as apoptosis can be induced only in the presence of low concentrations of cycloheximide (CHX). However, overexpression of IkappaBalpha-SR rendered SV80 cells sensitive to TRAIL-induced apoptosis in the absence of CHX, and cFLIP expression was able to reverse the proapoptotic effect of NF-kappaB inhibition. Western blot analysis further revealed that cFLIP, but not TRAF1, A20, and cIAP2, expression levels rapidly decrease upon CHX treatment. In conclusion, these data suggest a key role for cFLIP in the antiapoptotic response of NF-kappaB activation.  相似文献   

14.
In HeLa cells, induction of apoptosis and nuclear factor kappaB (NF-kappaB) activation initiated by TRAIL/Apo2L or the agonistic Apo1/Fas-specific monoclonal antibody anti-APO-1 require the presence of cycloheximide (CHX). Inhibition of caspases prevented TRAIL/anti-APO-1-induced apoptosis, but not NF-kappaB activation, indicating that both pathways bifurcate upstream of the receptor-proximal caspase-8. Under these conditions, TRAIL and anti-APO-1 up-regulated the expression of the known NF-kappaB targets interleukin-6, cellular inhibitor of apoptosis 2 (cIAP2), and TRAF1 (TRAF, tumor necrosis factor receptor-associate factor). In the presence of CHX, the stable overexpression of a deletion mutant of the Fas-associated death domain molecule FADD comprising solely the death domain of the molecule but lacking its death effector domain (FADD-(80-208)) led to the same response pattern as TRAIL or anti-APO-1 treatment. Moreover, the ability of death receptors to induce NF-kappaB activation was drastically reduced in a FADD-deficient Jurkat cell line. TRAIL-, anti-APO-1-, and FADD-(80-208)-initiated gene induction was blocked by a dominant-negative mutant of TRAF2 or the p38 kinase inhibitor SB203580, similar to tumor necrosis factor receptor-1-induced NF-kappaB activation. CHX treatment rapidly down-regulated endogenous cFLIP protein levels, and overexpression of cellular FLICE inhibitory protein (cFLIP) inhibited death receptor-induced NF-kappaB activation. Thus, a novel functional role of cFLIP as a negative regulator of gene induction by death receptors became apparent.  相似文献   

15.
Keratinocytes are the natural target cells for infection by human papillomaviruses (HPVs), most of which cause benign epithelial hyperplasias (warts). However, a subset of papillomaviruses, the "high risk" HPVs, cause lesions that can progress to carcinomas. Inflammatory mediators such as tumor necrosis factor-alpha (TNF-alpha) and TNF-related apoptosis-inducing ligand (TRAIL) are produced by cells in response to a viral infection. To determine the effects of TNF-alpha and TRAIL on keratinocytes expressing the high risk HPV-16 oncoprotein E7, human foreskin keratinocytes stably expressing E7 were treated with TNF-alpha and TRAIL. Treatment with TNF-alpha alone, but not TRAIL, induced growth arrest and differentiation in keratinocytes that was almost completely overcome by expression of HPV-16 E7. Both cytokines induced apoptosis when administered in combination with the protein synthesis inhibitor cycloheximide, but the apoptotic response to TRAIL was significantly more rapid and efficient compared with the response seen after TNF-alpha treatment. HPV-16 E7-expressing keratinocytes were more prone to both TNF-alpha- and TRAIL-mediated apoptosis compared with vector-infected controls.  相似文献   

16.
The pan Bcl-2 family antagonist Obatoclax (GX15-070), currently in clinical trials, was shown to sensitize TRAIL-resistant tumors to TRAIL-mediated apoptosis via the release of Bak and Bim from Mcl-1 or Bcl-2/Bcl-XL complexes or by the activation of Bax, though other mechanisms were not examined. Herein, we hypothesize that Obatoclax-mediated sensitization to TRAIL apoptosis may also result from alterations of the apoptotic pathways. The TRAIL-resistant B-cell line Ramos was used as a model for investigation. Treatment of Ramos cells with Obatoclax significantly inhibited the expression of several members of the Bcl-2 family, dissociated Bak from Mcl-1 and inhibited the NFκB activity. Cells treated with Mcl-1 siRNA were sensitized to TRAIL apoptosis. We examined whether the sensitization of Ramos to TRAIL by Obatoclax resulted from signaling of the DR4 and/or DR5. Transfection with DR5 siRNA, but not with DR4 siRNA, sensitized the cells to apoptosis following treatment with Obatoclax and TRAIL. The signaling via DR5 correlated with Obatoclax-induced inhibition of the DR5 repressor Yin Yang 1 (YY1). Transfection with YY1 siRNA sensitized the cells to TRAIL apoptosis following treatment with Obatoclax and TRAIL. Overall, the present findings reveal a new mechanism of Obatoclax-induced sensitization to TRAIL apoptosis and the involvement of the inhibition of NFκB activity and downstream Mcl-1 and YY1 expressions and activities.  相似文献   

17.
We established TRAIL-resistant MDA-231/TR cells from MDA-231 parent cells to understand the mechanism of TRAIL resistance in breast cancer cells. The selected TRAIL-resistant cells were cross-resistant to TNF-alpha/cycloheximide but remained sensitive to DNA-damage drugs such as oxaliplatin and etoposide. The expression levels of death receptors (DR4 and DR5), FADD, cIAP1, cIAP2, and Bcl-2 family were not changed in TRAIL-treated both cells. Significant down-regulation of XIAP and cFLIP was occurred after TRAIL treatment in MDA-231 cells whereas their levels were sustained in MDA-231/TR cells. TRAIL-mediated activation of ERK and JNK were also observed in parent MDA-231 cells but not in MDA-231/TR cells. However, TRAIL-resistant cells showed constitutive activation state after treatment with TRAIL. Pretreatment with PD98059 or transfection of MKK1-DN (dominant negative) expression vector attenuated TRAIL resistance in MDA-231/TR cells. Our findings provide the evidence that the sustained expression level of cFLIP(L) and XIAP protein and constitutive ERK activation may lead to acquired TRAIL resistance in breast cancer cells.  相似文献   

18.

Background

TNF-related apoptosis-inducing ligand (TRAIL) is an immune effector molecule that functions as a selective anti-tumor agent. However, tumor cells, especially metastatic tumor cells often exhibit a TRAIL-resistant phenotype, which is currently a major impediment in TRAIL therapy. The aim of this study is to investigate the synergistic effect of TNFα and IFN-γ in sensitizing metastatic colon carcinoma cells to TRAIL-mediated apoptosis.

Methodology/Principal Findings

The efficacy and underlying molecular mechanism of cooperation between TNFα and IFN-γ in sensitizing metastatic colon carcinoma cells to TRAIL-mediated apoptosis were examined. The functional significance of TNFα- and IFN-γ-producing T lymphocyte immunotherapy in combination with TRAIL therapy in suppression of colon carcinoma metastasis was determined in an experimental metastasis mouse model. We observed that TNFα or IFN-γ alone exhibits minimal sensitization effects, but effectively sensitized metastatic colon carcinoma cells to TRAIL-induced apoptosis when used in combination. TNFα and IFN-γ cooperate to repress Bcl-xL expression, whereas TNFα represses Survivin expression in the metastatic colon carcinoma cells. Silencing Bcl-xL expression significantly increased the metastatic colon carcinoma cell sensitivity to TRAIL-induced apoptosis. Conversely, overexpression of Bcl-xL significantly decreased the tumor cell sensitivity to TRAIL-induced apoptosis. Furthermore, TNFα and IFN-γ also synergistically enhanced TRAIL-induced caspase-8 activation. TNFα and IFN-γ was up-regulated in activated primary and tumor-specific T cells. TRAIL was expressed in tumor-infiltrating immune cells in vivo, and in tumor-specific cytotoxic T lymphocytes (CTL) ex vivo. Consequently, TRAIL therapy in combination with TNFα/IFN-γ-producing CTL adoptive transfer immunotherapy effectively suppressed colon carcinoma metastasis in vivo.

Conclusions/Significance

TNFα and IFN-γ cooperate to overcome TRAIL resistance at least partially through enhancing caspase 8 activation and repressing Bcl-xL expression. Combined CTL immunotherapy and TRAIL therapy hold great promise for further development for the treatment of metastatic colorectal cancer.  相似文献   

19.
Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) shows promise as a chemotherapeutic agent. However, many human cancer cells are resistant to killing by TRAIL. We have previously demonstrated that reovirus infection increases the susceptibility of human lung (H157) and breast (ZR75-1) cancer cell lines to TRAIL-induced apoptosis. We now show that reovirus also increases the susceptibility of human ovarian cancer cell lines (OVCAR3, PA-1 and SKOV-3) to TRAIL-induced apoptosis. Reovirus-induced increases in susceptibility of OVCAR3 cells to TRAIL require virus uncoating and involve increased activation of caspases 3 and 8. Reovirus infection results in the down-regulation of cFLIP (cellular FLICE inhibitory protein) in OVCAR3 cells. Down-regulation of cFLIP following treatment of OVCAR3 cells with antisense cFLIP oligonucleotides or PI3 kinase inhibition also increases the susceptibility of OVCAR3 cells to TRAIL-induced apoptosis. Finally, over-expression of cFLIP blocks reovirus-induced sensitization of OVCAR3 cells to TRAIL-induced apoptosis. The combination of reovirus and TRAIL thus represents a promising new therapeutic approach for the treatment of ovarian cancer.  相似文献   

20.
The majority of ovarian cancer cells are resistant to apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Subtoxic concentrations of the semisynthetic retinoid N-(4-hydroxyphenyl)retinamide (4HPR) enhanced TRAIL-mediated apoptosis in ovarian cancer cell lines but not in immortalized nontumorigenic ovarian epithelial cells. The enhancement of TRAIL-mediated apoptosis by 4HPR was not due to changes in the levels of proteins known to modulate TRAIL sensitivity. The combination of 4HPR and TRAIL enhanced cleavage of multiple caspases in the death receptor pathway (including the two initiator caspases, caspase-8 and caspase-9). The 4HPR and TRAIL combination leads to mitochondrial permeability transition, significant increase in cytochrome c release, and increased caspase-9 activation. Caspase-9 may further activate caspase-8, generating an amplification loop. Stable overexpression of Bcl-xL abrogates the interaction between 4HPR and TRAIL at the mitochondrial level by blocking cytochrome c release. As a consequence, a decrease in activation of caspase-9, caspase-8, and TRAIL-mediated apoptosis occurs. These results indicate that the enhancement in TRAIL-mediated apoptosis induced by 4HPR is due to the increase in activation of multiple caspases involving an amplification loop via the mitochondrial-death pathway. These findings offer a promising and novel strategy for the treatment of ovarian cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号