首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis, characterization and biological activity of the first zinc(II) complexes with potent inhibitors of cyclin-dependent kinases (CDKs) derived from 6-benzylaminopurine are described. Based on the results following from elemental analyses, infrared, NMR and ES+MS (electrospray mass spectra in the positive ion mode) spectroscopies, conductivity data, thermal analysis and X-ray structures, the tetrahedral Zn(II) complexes of the compositions [Zn(Olo)Cl(2)](n) (1), [Zn(iprOlo)Cl(2)](n) (2), [Zn(BohH(+))Cl(3)] x H(2)O (3) and [Zn(iprOloH(+))Cl(3)] x H(2)O (4) have been prepared, where Olo=2-(2-hydroxyethylamino)-6-benzylamino-9-methylpurine (Olomoucine), iprOlo=2-(2-hydroxyethylamino)-6-benzylamino-9-isopropylpurine (i-propyl-Olomoucine), Boh=2-(3-hydroxypropylamino)-6-benzylamino-9-isopropylpurine (Bohemine). The 1D-polymeric chain structure for [Zn(Olo)Cl(2)](n) (1) as well as the monomeric one for [Zn(BohH(+))Cl(3)] x H(2)O (3) and [Zn(iprOloH(+))Cl(3)] x H(2)O (4) have been revealed unambiguously by single crystal X-ray analyses. The 1D-polymeric chain of 1 consists of Zn(Olo)Cl(2) monomeric units in which the Zn(II) ion is coordinated by two chlorine atoms and one oxygen atom of the 2-hydroxyethylamino group of Olomoucine. The next monomeric unit is bonded to Zn(II) through the N7 atom of a purine ring. Thus, each of Zn(II) ions is tetrahedrally coordinated and a ZnCl(2)NO chromophore occurs in the complex 1. The complexes 3 and 4 are mononuclear species with a distorted tetrahedral arrangement of donor atoms around the Zn(II) ion with a ZnCl(3)N chromophore. The corresponding CDK inhibitor, i.e., both Boh and iprOlo, is coordinated to Zn(II) via the N7 atom of the purine ring in 3 and 4. The cytotoxicity of the zinc(II) complexes against human melanoma, sarcoma, leukaemia and carcinoma cell lines has been determined as well as the inhibition of the CDK2/cyclin E kinase. A relationship between the structure and biological activity of the complexes is also discussed.  相似文献   

2.
The new square-planar Pt(II) and Pd(II) complexes with cytokinin-derived compounds Bohemine and Olomoucine, having the formulae [Pt(BohH(+))Cl(3)].H(2)O (1), [Pt(Boh)(2)Cl(2)].3H(2)O (2), [Pt(Boh-H)Cl(H(2)O)(2)].H(2)O (3), [Pt(OloH(+))Cl(3)].H(2)O (4), [Pd(BohH(+))Cl(3)].H(2)O (5), [Pd(Boh)Cl(2)(H(2)O)] (6), [Pd(Boh-H)Cl(H(2)O)].EtOH (7) and [Pd(OloH(+))Cl(3)].H(2)O (8), where Boh=6-(benzylamino)-2-[(3-(hydroxypropyl)amino]-9-isopropylpurine and Olo=6-(benzylamino)-2-[(2-(hydroxyethyl)amino]-9-methylpurine, have been synthesized. The complexes have been characterized by elemental analyses, IR, FAB+ mass, 1H, 13C and 195Pt NMR spectra, and conductivity data. The molecular structure of the complex [Pt(BohH(+)-N7)Cl(3)].9/5H(2)O has been determined by an X-ray diffraction study. Results from physical studies show that both Bohemine and Olomoucine are coordinated to transition metals through the N(7) atom of purine ring in all the complexes. The prepared compounds have been tested in vitro for their possible cytotoxic activity against G-361 (human malignant melanoma), HOS (human osteogenic sarcoma), K-562 (human chronic myelogenous leukemia) and MCF-7 (human breast adenocarcinoma) cell lines and IC(50) values have been also determined for all the complexes. IC(50) values estimated for the Pt(II)-Bohemine complexes (2.1-16 microM) allow us to conclude that they could find utilization in antineoplastic therapy. Thus, from a pharmacological point of view, Pt(II) complexes of Bohemine may represent compounds for a new class of antitumor drugs.  相似文献   

3.
A series of square-planar Pd(II) complexes of the composition cis-[Pd(L(n))(2)Cl(2)] {L(1)=2-chloro-6-benzylamino-9-isopropylpurine (1), L(2)=2-chloro-6-[(4-methoxybenzyl)amino]-9-isopropylpurine (2), L(3)=2-chloro-6-[(2-methoxybenzyl)amino]-9-isopropylpurine (3) and 2-[(chloropropyl)amino]-6-benzylamino-9-isopropylpurine (6)} has been synthesized by the reaction of PdCl(2) with L(n) in a 1:2 molar ratio. In contrast, the same reaction followed by recrystallization of the product from N,N'-dimethylformamide (DMF) leads to trans-[Pd(L(n))(2)Cl(2)] x nDMF {L(3), n=0 (4), n=1(4( *)DMF); L(4)=2-chloro-6-[(2,3-dimethoxybenzyl)-amino]-9-isopropylpurine, n=0 (5), n=1.5 (5( *)DMF). The compounds have been characterized by elemental analyses, conductivity measurements, electrospray mass spectra in the positive ion mode (ES+MS), FTIR, (1)H and (13)C NMR spectra, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Moreover, the complexes 2 and 6 have been also investigated by (15)N NMR spectroscopy. The molecular structures of L(5), {(H(2+)L(5))(Cl(-))(2)} x H(2)O, i.e. the protonated form of L(5), trans-[Pd(L(3))(2)Cl(2)] (4) and trans-[Pd(L(4))(2)Cl(2)] (5) have been determined by single crystal X-ray analysis. NMR data and X-ray structures revealed that the organic molecules are coordinated to Pd via N7 atom of a purine moiety. All the complexes and the corresponding ligands have been tested in vitro for their cytotoxicity against four human cancer cell lines: breast adenocarcinoma (MCF7), malignant melanoma (G361), chronic myelogenous leukaemia (K562) and osteogenic sarcoma (HOS). Promising in vitro cytotoxic effect has been found for cis-[Pd(L(2))(2)Cl(2)] (2), having the IC(50) values of 12, 10, 25, and 14 microM against MCF7, G361, K562, and HOS, respectively, and for trans-[Pd(L(3))(2)Cl(2)].DMF (4) with the IC(50) value of 15 microM against G361.  相似文献   

4.
The Pt(II) and Pd(II) complexes of the types cis-[Pt(L(1))(2)Cl(2)].H(2)O (1), cis-[Pt(L(2))(2)Cl(2)].3H(2)O (2), trans-[Pd(L(1))(2)Cl(2)].H(2)O (3), trans-[Pd(L(2))(2)Cl(2)].H(2)O (4), trans-[Pd(L(3))(2)Cl(2)].2DMF (5) and trans-[Pd(L(4))(2)Cl(2)].2DMF (6) (L(1)-L(4)=cyclin-dependent kinase inhibitors derived from 6-benzylamino-9-isopropylpurine) have been prepared and characterized. The complexes have been studied by elemental analyses, conductivity measurements, ES+ MS, FT-IR, (1)H, (13)C and (195)Pt NMR spectra, differential scanning calorimetry and thermogravimetric analysis. The molecular structures of L(1), trans-[Pd(L(3))(2)Cl(2)].2DMF (5) and trans-[Pd(L(4))(2)Cl(2)].2DMF (6) have been determined by single crystal X-ray analysis. The complexes have been tested in vitro due to their presumable anticancer activity against the following human cancer cell lines: K-562, MCF7, G-361 and HOS. Satisfying results were obtained for the complex 1 with IC(50) values of 6 microM acquired against G-361 as well as against HOS cell lines. The lowest values of IC(50) were achieved for the complexes 3 and 4 against MCF 7 cell line with IC(50) 3 microM(for 3) and also 3 microM (for 4).  相似文献   

5.
5-Fluorouracil-cisplatin adducts with potential antitumor activity   总被引:1,自引:0,他引:1  
Using 5-fluorouracil (5-FU) and cis-diamminedichloroplatinum(II) (cisplatin, CDDP) as starting compounds, 5-FU-cisplatin adducts cis-[Pt(NH(3))(2)(HFU)Cl] (1) and cis-[Pt(NH(3))(2)(HFU)(2)] (2) were prepared. The obtained complexes were characterized by IR, ES-MS and 1H NMR spectroscopy. Complex 1 reacted with guanosine-5'-monophosphate (5'-GMP) and gave rise to a stable mixed-ligand complex cis-[Pt(NH(3))(2)(HFU)(GMP)] (3), whereas 2 did not undergo a similar reaction. In vitro cell growth inhibition tests of complexes 1 and 2 exhibited moderate antitumor activities against the melanoma B16-BL6 cell line. This work provides the basis for a potential alternative for the combinational use of 5-FU and CDDP in cancer therapy.  相似文献   

6.
The preparation of platinum(II) complexes containing L-serine using K(2)[PtCl(4)] and KI as raw materials was undertaken. The cis-trans isomer ratio of the complexes in the reaction mixture differed significantly depending on whether KI was present or absent in the reaction mixture. One of the two [Pt(L-ser-N,O)(2)] complexes (L-ser=L-serinate anion) prepared using KI crystallizes in the monoclinic space group P2(1)2(1)2(1) with unit cell dimensions a=8.710(2) A, b=9.773(3) A, c=11.355(3) A, Z=4. The crystal data revealed that this complex has a cis configuration. The other [Pt(L-ser-N,O)(2)] complex also crystallizes in the monoclinic space group P2(1)2(1)2(1) with unit cell dimensions a=7.0190(9) A, b=7.7445(6) A, c=20.946(2) A, Z=4. The crystal data revealed that this complex has a trans configuration. The 195Pt NMR chemical shifts of trans-[Pt(L-ser-N,O)(2)] and cis-[Pt(L-ser-N,O)(2)] complexes are -1632 and -1832 ppm, respectively. 195Pt NMR and HPLC measurements were conducted to monitor the reactions of the two [Pt(L-ser-N,O)(2)] complexes with HCl. Both 195Pt NMR and HPLC showed that the reactivities of cis- and trans-[Pt(L-ser-N,O)(2)] toward HCl are different: coordinated carboxyl oxygen atoms of trans-[Pt(L-ser-N,O)(2)] were detached faster than those for cis-[Pt(L-ser-N,O)(2)].  相似文献   

7.
The reactions of Pt(II) complexes, cis-[Pt(NH3)2Cl2], [Pt(terpy)Cl]+, [Pt(terpy)(S-cys)]2+, and [Pt(terpy)(N7-guo)]2+, where terpy=2,2':6',2'-terpyridine, S-cys=L-cysteine, and N7-guo=guanosine, with some biologically relevant ligands such as guanosine-5'-monophosphate (5'-GMP), L-cysteine, glutathione (GSH) and some strong sulfur-containing nucleophiles such as diethyldithiocarbamate (dedtc), thiosulfate (sts), and thiourea (tu), were studied in aqueous 0.1 M Hepes at pH of 7.4 using UV-vis, stopped-flow spectrophotometry, and 1H NMR spectroscopy.  相似文献   

8.
Novel platinum(IV) complexes were synthesized having octahedral structure for new antitumor agents. The series of (1,4-butanediamine)Pt(IV) complexes of the type trans,cis-[PtA(2)Cl(2)(1,4-butanediamine)] (A=hydroxo 9, acetato 12, trifluoroacetato 13 as axial ligands) and trans-[PtA(2)(malonate)(1,4-butanediamine)] (A=hydroxo 16, acetato 17, trifluoroacetato 18) were synthesized and characterized by IR, NMR and elemental analysis. The molecular structures of 12, 13 and 18 have been determined by X-ray diffraction methods. The crystals are monoclinic, P2 1/c with a=21.165 (5), b=9.050 (3), c=15.293 (3) A, beta=103.89 (2) degrees and Z=8 for 12, a=10.178 (5), b=12.894 (9), c=12.182 (8) A, beta=91.01 (5) degrees and Z=4 for 13 and a=10.460 (5), b=11.199 (8), c=15.641 (7) A, beta=98.41 (5) degrees, Z=4 for 18. Three crystallographically independent molecules of 12, 13 and 18 have octahedral coordination around Pt(IV) cation. The trans,cis-[PtA(2)Cl(2)(1,4-butanediamine)] were prepared by acetylation or trifluoroacetylation of trans,cis-[Pt(OH)(2)Cl(2)(1,4-butanediamine)]. The trans-[PtA(2)malonate(1,4-butanediamine)] 17 and 18 was prepared by a similar method. The in vitro cytotoxicity of theses Pt(IV) complexes have been evaluated against 12 cancer cell lines assayed by MTS method. The IC(50) values of the compounds 12 and 13 were shown to be lower than those of cisplatin. The in vivo antitumor activity of the Pt(IV) complexes was evaluated using mice bearing L1210 leukemia, B16 melanoma and L1210/cis-DDP cancer animal models. The compound 18 was found to highest activity against cisplatin-resistant cancer cells, L1210/cis-DDP, in vivo.  相似文献   

9.
The reaction of the antitumor active agent cis-[Pt(NH3)2(4-mepy)Cl]Cl (4-mepy stands for 4-methylpyridine) with d(GpG) has been investigated by 1H magnetic resonance spectroscopy. Initially, two mononuclear complexes cis-Pt(NH3)2(4-mepy)[d(GpG)-N7(1)] 1 and cis-Pt(NH3)2(4-mepy)[d(GpG)-N7(2)] 2 are formed in an unexpected ratio 65:35, as determined by 1H NMR and enzymatic digestion techniques. Both products react further with a second equivalent of cis-[Pt(NH3)2(4-mepy)Cl]Cl forming the dinuclear platinum complex [cis-Pt(NH3)2(4-mepy)]2[mu-d(GpG)- N7(1),N7(2)] 3. With [Pt(dien)Cl]Cl and [Pt(NH3)3Cl]Cl similar complexes are formed. No evidence was found for the formation of chelates cis-Pt(NH3)(4-mepy) [d(GpG)-N7(1),N7(2)], which would be formed upon ammonia release from the mononuclear complexes 1 and 2. Even addition of strong nucleophiles, like sodium diethyldithiocarbamate, thiourea, cysteine, or methionine, before or after reaction, do not induce the formation of a chelate. Under all conditions the N-donor ligands remain coordinated to Pt in 1,2 and 3. In addition, the results of bacterial survival and mutagenesis experiments with E. coli strains show that the in vivo formation of bifunctional adducts in DNA, comparable to those induced by cis-Pt(NH3)2Cl2, by treatment of cells with cis-[Pt(NH3)2(4-mepy)Cl]Cl is unlikely. Also, a mechanism of binding and intercalation is not supported by experimental data. All experiments suggest that the mechanism of action of this new class of antitumor agents must be different from that of cis-Pt(NH3)2Cl2.  相似文献   

10.
Novel platinum(II) complexes with 5,7-disubstituted-1,2,4-triazolo[1,5-a]pyrimidines have been synthesized and characterized by infrared and multinuclear magnetic resonance spectroscopic techniques (1H, 13C, 15N, 195Pt). The complexes are of two types: [PtCl2(L)2] and [PtCl2(NH3)(L)], where L=5,7-diphenyl-1,2,4-triazolo[1,5-a]pyrimidine (dptp) and 5,7-ditertbutyl-1,2,4-triazolo[1,5-a]pyrimidine (dbtp). Significant 15N NMR upfield shifts (92-95 ppm) were observed for N(3) atom indicating this nitrogen atom as a coordination site. The molecular structure suggest that Pt(II) ion has the square planar geometry with N(3) bonded 5,7-disubstituted-1,2,4-triazolo[1,5-a]pyrimidines, N-bonded second ligand (NH3 for cis-[PtCl2(NH3)(L)] or, respectively, 5,7-disubstituted-1,2,4-triazolo[1,5-a]pyrimidines for cis-[PtCl2L2]) and two cis chloride anions. The antiproliferative activity in vitro of complexes (1-4) have been tested against the cells of four human cell lines: SW707 rectal adenocarcinoma, A549 non-small cell lung carcinoma, T47D breast cancer and HCV29T bladder cancer. The results indicate a moderate antiproliferative activity of (4) against the cells of rectal, breast and bladder cancer and a marked and selective cytotoxic effect of (1-3) against the cells of all studied human cancer lines.  相似文献   

11.
We prepared platinum(IV) complexes containing dipeptide and diimine or diamine, the [PtCl(dipeptide-N,N,O)(diimine or diamine)]Cl complex, where -N,N,O means dipeptide coordinated as a tridentate chelate, dipeptide=glycylglycine (NH(2)CH(2)CON(-)CH(2)COO(-), digly, where two protons of dipeptide are detached when the dipeptide coordinates to metal ion as a tridentate chelate), glycyl-L-alanine (NH(2)CH(2)CON(-)CHCH(3)COO(-), gly-L-ala), L-alanylglycine (NH(2)CH CH(3)CON(-)CH(2)COO(-), L-alagly), or L-alanyl-L-alanine (NH(2)CHCH(3)CON(-)CHCH(3)COO(-), dil-ala), and diimine or diamine=bipyridine (bpy), ethylenediamine (en), N-methylethylenediamine (N-Me-en), or N,N'-dimethylethylenediamine (N,N'-diMe-en). In the complexes containing gly-L-ala or dil-ala, two separate peaks of the (195)Pt NMR spectra of the [PtCl(dipeptide-N,N,O)(diimine or diamine)]Cl complexes appeared in, but in the complexes containing digly or L-alagly, one peak which contained two overlapped signals appeared. One of the two complexes containing gly-L-ala and bpy, [PtCl(gly-L-ala-N,N,O)(bpy)]NO(3), crystallized and was analyzed. This complex has the monoclinic space group P2(1)2(1)2(1) with unit cell dimensions of a=9.7906(3)A, b=11.1847(2)A, c=16.6796(2)A, Z=4. The crystal data revealed that this [PtCl(gly-L-ala-N,N,O)(bpy)]NO(3) complex has the near- (Cl, CH(3)) configuration of two possible isomers. Based on elemental analysis, the other complex must have the near- (Cl, CH(3))-[PtCl(gly-L-ala-N,N,O)(bpy)]NO(3) configuration. The (195)Pt NMR chemical shifts of the near- (Cl, CH(3))-[PtCl(gly-L-ala-N,N,O)(bpy)]NO(3) complex and the far- (Cl, CH(3))-[PtCl(gly-L-ala-N,N,O)(bpy)]NO(3) complex are 0 ppm and -19 ppm, respectively (0 ppm for the Na(2)[PtCl(6)] signal). The additive property of the (195)Pt NMR chemical shift is discussed. The (195)Pt NMR chemical shifts of [PtCl(dipeptide-N,N,O)(bpy)]Cl appeared at a higher field when the H attached to the dipeptide carbon atom was replaced with a methyl group. On the other hand, the (195)Pt NMR chemicals shifts of [PtCl(dipeptide-N,N,O)(diamine)] appeared at a lower field when the H attached to the diamine nitrogen atom was replaced with a methyl group, in the order of [PtCl(digly-N,N,O)(en)]Cl, [PtCl(digly-N,N,O)(N-Me-en)]Cl, and [PtCl(digly-N,N,O)(N,N'-diMe-en)]Cl.  相似文献   

12.
An interesting series of new platinum complexes has been synthesized by the reaction of Na(2)PtCl(4) with 2-acetyl pyridine thiosemicarbazone, HAcTsc. The new complexes, [Pt(AcTsc)Cl], [Pt(HAcTsc)(2)]Cl(2) and [Pt(AcTsc)(2)], have been characterized by elemental analyses and spectroscopic studies. The crystal structure of the complex [Pt(AcTsc)Cl] has been solved by single-crystal X-ray diffraction. The anion of HAcTsc coordinates in a planar conformation to the central platinum(II) through the pyridyl N, azomethine N and thiolato S atoms. Double intermolecular hydrogen bonds (NH-Cl), pi-pi and weak Pt-Pt and Pt-pi contacts lead to aggregation and to a two-dimensional supramolecular assembly. The antibacterial and antifungal effect of the novel platinum(II) complexes and the related palladium(II) complexes, [Pd(AcTsc)Cl], [Pd(HAcTsc)(2)]Cl(2) and [Pd(AcTsc)(2)], were studied in vitro. The complexes were found to have a completely lethal effect on Gram+ bacteria, while the same complexes showed no bactericidal effect on Gram- bacteria. Additionally, the complexes [Pt(AcTsc)(2)] and [Pd(AcTsc)(2)] showed effective antifungal activity towards yeast. Among these compounds [33], the most effective in inducing antitumour and cytogenetic effects are the complexes [Pt(AcTsc)(2)] and [Pd(AcTsc)(2)] while the rest, display marginal cytogenetic and antitumour effects.  相似文献   

13.
Complexes of the general structure cis-[PtX(2)(hydrazide)(2)] and cis-[PtX(2)NH(3)(hydrazide)], where X=Cl(-), Br(-) and I(-), and hydrazide=cyclohexylcarboxylic acid hydrazide (chcah), cyclopentylcarboxylic acid hydrazide (cpcah), 3-aminocyclohexanspiro-5-hydantoin (achsh) and 3-aminocyclopentanspiro-5-hydantoin (acpsh), were investigated with respect to aqueous stability, DNA platination rates and cytotoxic activity on a panel of seven human cancer cell lines as well as a cisplatin-resistant cell line. Stabilities in aqueous solution, determined by RP-HPLC and UV-Vis methods, were highly dependent on the type of halide ligand, with stability decreasing in the order I(-)>Cl(-)>Br(-). Added chloride (100 mM) only stabilized the dichloro-Pt(II) complexes containing the hydrazide as part of a hydantoin ring (i.e., achsh). Platination of calf thymus DNA determined by AAS was most rapid with dichloro-Pt(II) complexes containing achsh ligand. The mixed-amine dichloro-Pt(II) complexes with either chcah or cpcah ligands also platinated DNA >80%, but at a slower rate, while dihydrazide dichloro-Pt(II) complexes with either chcah or cpcah ligands resulted in <25% DNA platination at 24 h. cis-[PtX(2)(hydrazide)(2)], where hydrazide=chcah or cpcah, were the most potent compounds (chcah>cpcah), but activity was independent of the halide ligand (I(-)=Cl(-)=Br(-)). These complexes showed no cross-resistance with cisplatin, but they also showed little differentiation in potency over the seven cell lines. Complexes with the hydantoin ligands achsh and acpsh were inactive in all cell lines. Thus, neither stability in aqueous media nor covalent binding to DNA are correlated with biological activity, suggesting that cis-dihydrazide Pt(II) complexes act by a unique mechanism of action.  相似文献   

14.
A series of new platinum(II) and platinum(IV) adducts of type [P(II)(cis-1,4-DACH)LCl]NO(3,) where cis-1,4-DACH=cis-1,4-diaminocyclohexane, and L=9-ethylguanine, 1-methylcytosine, adenine, adenosine, cytosine, cytidine, guanine, and [Pt(IV)(cis-1,4-DACH)Ltrans-(X)(2)Cl]NO(3), (where Y=hydroxo or acetato), were synthesized and characterized by elemental analysis, infrared spectroscopy, and 1H and 195Pt nuclear magnetic resonance spectroscopy.  相似文献   

15.
Preparations of copper(II) and palladium(II) complexes of 4-amino-5-methylthio-3-(2-pyridyl)-1,2,4-triazole (L(1)) and the copper(II) complex of 1,4-dihydro-4-amino-3-(2-pyridyl)-5-thioxo-1,2,4-triazole (HL) are described. These complexes have been characterized by means of spectroscopy and microanalysis. Molecular structures of HL (1), [CuCl(2)(H(2)L)]Cl.2H(2)O (2a), cis-[CuCl(2)(L(1))] (3), and cis-[PdCl(2)(L(1))] (4) have been determined by single-crystal X-ray diffraction. The HL ligand acts as a N,S bidentate through the thioxo moiety and the exo-amino group whilst the ligand L(1) forms N,N coordination complexes through the pyridine and triazole nitrogen atoms. Speciation in solution of the systems Cu/HL and Cu/L(1) have been determined by means of potentiometry and spectrophotometry as well as for the Cu/L(1)/A (HA=glycine) system in order to determine species present at physiological pH. Antiproliferative activity of these complexes and their ligands was evaluated, using the AlamarBlue Assay, on normal human fibroblasts (HF) and human fibrosarcoma tumor (HT1080) cells. The copper compounds cis-[CuCl(2)(H(2)L)]Cl and cis-[CuCl(2)(L(1))] exerted significant antiproliferative activity of both normal and neoplastic cells; although dose-response experiments revealed that the HT1080 cell line was more sensitive to the tested drugs than normal fibroblasts.  相似文献   

16.
The reaction between [PtCl(dmso)(en)]Cl (dmso=dimethyl sulfoxide, en=ethylenediamine) and N-(3-pyridyl)-2-(4-(trifluoromethyl)phenyl)diazenecarboxamide (L) was studied using multinuclear NMR spectroscopy. The water-soluble complexes [PtCl(en)(L-N1)](+) (1) and [Pt(en)(L-N1)(2)](2+) (2) were isolated and their reactions with glutathione (GSH) were investigated to assess the oxidation properties of coordinated L. Both species 1 and 2 oxidized GSH to GSSG, while the reduced form of L (semicarbazide, SL) remained coordinated to Pt(2+). In complex 1 the labile chloride ion was substituted by the thiol moiety of GSH, which gave rise to the release of en in excess GSH over a period of 7 days. Complexes [PtCl(dmso)(en)]Cl, 1, 2 and ligand L were tested against T24 bladder carcinoma cells. Ligand L and complexes 1 and 2 showed higher cytotoxicity than [PtCl(dmso)(en)]Cl.  相似文献   

17.
A comparative study of the binding of square planar cis- and trans-[Pt(NH3)2Cl2] complexes and the octahedral [Ru(NH3)5(H2O)]3+ complex to tRNAphe from yeast was carried out by X-ray crystallography. Both of the carcinostatic compounds, cis-[Pt(NH3)2Cl2] and [Ru(NH3)5(H2O)]3+ show similarities in their mode of binding to tRNA. These complexes bind specifically to the N(7) positions of guanines G15 and G18 in the dihydrouridine loop. [Ru(NH3)5(H2O)]3+ has an additional binding site at N(7) of residue G1 after extensive soaking times (58 days). A noncovalent binding site for ruthenium is also observed in the deep groove of the acceptor stem helix with shorter (25 days) soaking time. The major binding site for the inactive trans-[Pt(NH3)Cl2] complex is at the N(1) position of residue A73, with minor trans-Pt binding sites at the N(7) positions of residues Gm34, G18 and G43. The similarities in the binding modes of cis-[Pt(NH3)2Cl2] and [Ru(NH3)5(H2O)]3+ are expected to be related to their carcinostatic properties.  相似文献   

18.
A range of [PtR(2)(chxn)] (R=C(6)F(5), o-HC(6)F(4), p-HC(6)F(4), p-MeOC(6)F(4) or 3,5-H(2)C(6)F(3); chxn=cyclohexane-1,2-diamine) and cis-[PtR(2)(dmso)(2)] (R=C(6)F(5), p-HC(6)F(4) or p-MeOC(6)F(4); dmso=dimethyl sulfoxide) complexes have been prepared from the corresponding [PtR(2)(diene)] (diene=cis,cis-cycloocta-1,5-diene (cod), hexa-1,5-diene (hex), norbornadiene (nbd) or dicyclopentadiene (dcy)) derivatives and have been spectroscopically characterized. A representative crystal structure of [Pt(C(6)F(5))(2)(cis-chxn)] was determined and shows a slightly distorted square planar geometry for platinum with chxn virtually perpendicular to the coordination plane. The biological activity against L1210 and L1210/DDP cell lines of these compounds together with the behaviour of other organoplatinum complexes, [PtR(2)L(2)] (L(2)=ethane-1,2-diamine (en) or cis-(NH(3))(2)) have been determined. Despite the use of relatively inert fluorocarbon anions as leaving groups, moderate-high cell growth inhibitory activity is observed. None of the fluorocarbon complexes displayed any cross resistance with cisplatin.  相似文献   

19.
Four platinum(II) and palladium(II) complexes with sugar-conjugated bipyridine-type triazole ligands, [Pt(II) Cl(2) (AcGlc-pyta)] (3), [Pd(II) Cl(2) (AcGlc-pyta)] (4), [Pt(II) Cl(2) (Glc-pyta)] (5), and [Pd(II) Cl(2) (Glc-pyta)] (6), were prepared and characterized by mass spectrometry, elemental analysis, (1) H- and (13) C-NMR, IR as well as UV/VIS spectroscopy, where AcGlc-pyta and Glc-pyta denote 2-[4-(pyridin-2-yl)-1H-1,2,3-triazol-1-yl]ethyl 2,3,4,6-tetra-O-acetyl-β-D-glucopyranoside (1) and 2-[4-(pyridin-2-yl)-1H-1,2,3-triazol-1-yl]ethyl β-D-glucopyranoside (2), respectively. The solid-state structure of complex 6 was determined by single-crystal X-ray-diffraction analysis. These complexes exhibited in vitro cytotoxicity against human cervix tumor cells (HeLa) though weaker than that of cisplatin.  相似文献   

20.
Four new binuclear complexes of formula [M2(bipy)2(BAA)]Cl2 (where M is Pt(II) or Pd(II), bipy is 2,2'-bipyridine, and BAA is a dianion of meso-alpha-alpha'-diaminoadipic acid (DAA) or meso-alpha,alpha'-diaminosuberic acid (DSA) have been synthesized. These complexes have been characterized by chemical analysis and ultraviolet-visible, infrared, and 1H NMR spectroscopy. The mode of binding of ligands in these complexes has been ascertained by infrared and detailed 1H NMR spectroscopy. These complexes are 1:2 electrolyte in conductivity water. They have also been tested against P388 lymphocytic leukemia cells and their target is DNA molecules. [Pt2(bipy)2(DSA)]Cl2, [Pd2(bipy)2(DSA)Cl2, and [Pd2(bipy)2(DAA)]Cl2 show I.D.50 values comparable or lower than cis-diamminedichloroplatinum(II) and [Pt(bipy)(Ala)]Cl. In addition, binding studies of [Pt2(bipy)2(DSA)]Cl2 and [Pd2(bipy)2(DAA)]Cl2 to calf thymus DNA have been carried out and the mode of binding seems to be hydrogen bonding, as suggested earlier for analogous mononuclear amino acid-DNA complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号