首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Viral diseases severely affect crop yield and quality, thereby threatening global food security. Genetic improvement of plant virus resistance is essential for sustainable agriculture. In the last decades, several modern technologies were applied in plant antiviral engineering. Here we summarized breakthroughs of the two major antiviral strategies, RNA silencing and genome editing. RNA silencing strategy has been used in antiviral breeding for more than thirty years, and many crops engineered to stably express small RNAs targeting various viruses have been approved for commercial release. Genome editing technology has emerged in the past decade, especially CRISPR/Cas, which provides new methods for genetic improvement of plant virus resistance and accelerates resistance breeding. Finally, we discuss the potential of these technologies for breeding crops, and the challenges and solutions they may face in the future.  相似文献   

2.
植物抗病毒病育种策略   总被引:2,自引:0,他引:2  
为了得到抗病毒的寄主植物,植物育种学家进行了许多有益研究,形成了许多行之有效的抗病毒病育种策略。利用植物本身对病毒侵染所具有的一些免疫功能及其本身的一些抗性基因来获得抗性;利用来源于病毒自身基因的一些抗病性策略(PDR),如利用病毒外壳蛋白基因,病毒复制酶基因,病毒移动蛋白基因,病毒卫星RNA和反义RNA等,植物也可以获得抗性。近年来对由转录后RNA沉默引起的由RNA介导的病毒抗性策略(RMVR)也进行了深入地研究。除了PDR和RMVR以外,还有一些导致植物抗病毒的策略,包括利用美国商陆的病毒抗性蛋白(PAP),2',5’-寡腺苷酸合成酶,“植物抗体”以及病毒蛋白多肽来获得病毒抗性等。  相似文献   

3.
Recent discoveries regarding small RNAs and the mechanisms of gene silencing are providing new opportunities to explore fungal pathogen-host interactions and potential strategies for novel disease control. Plant pathogenic fungi are a constant and major threat to global food security; they represent the largest group of disease-causing agents on crop plants on the planet. An initial understanding of RNA silencing mechanisms and small RNAs was derived from model fungi. Now, new knowledge with practical implications for RNA silencing is beginning to emerge from the study of plant-fungus interactions. Recent studies have shown that the expression of silencing constructs in plants designed on fungal genes can specifically silence their targets in invading pathogenic fungi, such as Fusarium verticillioides, Blumeria graminis and Puccinia striiformis f.sp. tritici. Here, we highlight the important general aspects of RNA silencing mechanisms and emphasize recent findings from plant pathogenic fungi. Strategies to employ RNA silencing to investigate the basis of fungal pathogenesis are discussed. Finally, we address important aspects for the development of fungal-derived resistance through the expression of silencing constructs in host plants as a powerful strategy to control fungal disease.  相似文献   

4.
植物抗病毒基因工程研究进展   总被引:4,自引:0,他引:4  
  相似文献   

5.
Following the conceptual development of virus resistance strategies ranging from coat protein-mediated interference of virus propagation to RNA-mediated virus gene silencing, much progress has been achieved to protect plants against RNA and DNA virus infections. Geminiviruses are a major threat to world agriculture, and breeding resistant crops against these DNA viruses is one of the major challenges faced by plant virologists and biotechnologists. In this article, we review the most recent transgene-based approaches that have been developed to achieve durable geminivirus resistance. Although most of the strategies have been tested in model plant systems, they are ready to be adopted for the protection of crop plants. Furthermore, a better understanding of geminivirus gene and protein functions, as well as the native immune system which protects plants against viruses, will allow us to develop novel tools to expand our current capacity to stabilize crop production in geminivirus epidemic zones.  相似文献   

6.
《遗传学报》2022,49(8):693-703
Plant diseases caused by diverse pathogens lead to a serious reduction in crop yield and threaten food security worldwide. Genetic improvement of plant immunity is considered as the most effective and sustainable approach to control crop diseases. In the last decade, our understanding of plant immunity at both molecular and genomic levels has improved greatly. Combined with advances in biotechnologies, particularly clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9-based genome editing, we can now rapidly identify new resistance genes and engineer disease-resistance crop plants like never before. In this review, we summarize the current knowledge of plant immunity and outline existing and new strategies for disease resistance improvement in crop plants. We also discuss existing challenges in this field and suggest directions for future studies.  相似文献   

7.
8.
Plant viruses are known to infect most economically important crops and pose a major threat to global food security. Currently, few resistant host phenotypes have been delineated, and while chemicals are used for crop protection against insect pests and bacterial or fungal diseases, these are inefficient against viral diseases. Genetic engineering emerged as a way of modifying the plant genome by introducing functional genes in plants to improve crop productivity under adverse environmental conditions. Recently, new breeding technologies, and in particular the exciting CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR‐associated proteins) technology, was shown to be a powerful alternative to engineer resistance against plant viruses, thus has great potential for reducing crop losses and improving plant productivity to directly contribute to food security. Indeed, it could circumvent the “Genetic modification” issues because it allows for genome editing without the integration of foreign DNA or RNA into the genome of the host plant, and it is simpler and more versatile than other new breeding technologies. In this review, we describe the predominant features of the major CRISPR/Cas systems and outline strategies for the delivery of CRISPR/Cas reagents to plant cells. We also provide an overview of recent advances that have engineered CRISPR/Cas‐based resistance against DNA and RNA viruses in plants through the targeted manipulation of either the viral genome or susceptibility factors of the host plant genome. Finally, we provide insight into the limitations and challenges that CRISPR/Cas technology currently faces and discuss a few alternative applications of the technology in virus research.  相似文献   

9.
10.
11.
A tremendous decline in cultivable land and resources and a huge increase in food demand calls for immediate attention to crop improvement. Though molecular plant breeding serves as a viable solution and is considered as “foundation for twenty-first century crop improvement”, a major stumbling block for crop improvement is the availability of a limited functional gene pool for cereal crops. Advancement in the next generation sequencing (NGS) technologies integrated with tools like metabolomics, proteomics and association mapping studies have facilitated the identification of candidate genes, their allelic variants and opened new avenues to accelerate crop improvement through development and use of functional molecular markers (FMMs). The FMMs are developed from the sequence polymorphisms present within functional gene(s) which are associated with phenotypic trait variations. Since FMMs obviate the problems associated with random DNA markers, these are considered as “the holy grail” of plant breeders who employ targeted marker assisted selections (MAS) for crop improvement. This review article attempts to consider the current resources and novel methods such as metabolomics, proteomics and association studies for the identification of candidate genes and their validation through virus-induced gene silencing (VIGS) for the development of FMMs. A number of examples where the FMMs have been developed and used for the improvement of cereal crops for agronomic, food quality, disease resistance and abiotic stress tolerance traits have been considered.  相似文献   

12.
Host-induced gene silencing (HIGS) refers to the silencing of genes in pathogens and pests by expressing homologous double-stranded RNAs (dsRNA) or artificial microRNAs (amiRNAs) in the host plant. The discovery of such trans-kingdom RNA silencing has enabled the development of RNA interference-based approaches for controlling diverse crop pathogens and pests. Although HIGS is a promising strategy, the mechanisms by which these regulatory RNAs translocate from plants to pathogens, and how they induce gene silencing in pathogens, are poorly understood. This lack of understanding has led to large variability in the efficacy of various HIGS treatments. This variability is likely due to multiple factors, such as the ability of the target pathogen or pest to take up and/or process RNA from the host, the specific genes and target sequences selected in the pathogen or pest for silencing, and where, when, and how the dsRNAs or amiRNAs are produced and translocated. In this review, we summarize what is currently known about the molecular mechanisms underlying HIGS, identify key unanswered questions, and explore strategies for improving the efficacy and reproducibility of HIGS treatments in the control of crop diseases.

A review of what is known and unknown about the molecular mechanisms underlying the silencing of pathogen and pest genes via the expression of complementary RNAs in the host plant.  相似文献   

13.
14.
15.
病毒诱导的基因沉默及其在植物基因功能研究中的应用   总被引:9,自引:0,他引:9  
RNA介导的基因沉默是近年来在生物体中发现的一种基于核酸水平高度保守的特异性降解机制.病毒诱导的基因沉默(virus induced gene silencing, VIGS)是指携带植物功能基因cDNA的病毒在侵染植物体后,可诱导植物发生基因沉默而出现表型突变,进而可以研究该目的基因功能.至今,已经建立了以RNA病毒、DNA病毒、卫星病毒和DNA卫星分子为载体的VIGS体系,这些病毒载体能在多种寄主植物(包括拟南芥、番茄和大麦)上有效抑制功能基因的表达.VIGS已开始应用于N基因和Pto基因介导的抗性信号途径中关键基因的功能研究、抗病毒相关的寄主因子研究以及植物代谢和发育调控研究.在当前植物基因组或EST序列大量测定的情况下,VIGS为植物基因功能鉴定提供了有效的技术平台.  相似文献   

16.
17.
One of the challenges being faced in the twenty-first century is the biological control of plant viral infections. Among the different strategies to combat virus infections, those based on pathogen-derived resistance (PDR) are probably the most powerful approaches to confer virus resistance in plants. The application of the PDR concept not only revealed the existence of a previously unknown sequence-specific RNA-degradation mechanism in plants, but has also helped to design antiviral strategies to engineer viral resistant plants in the last 25 years. In this article, we review the different platforms related to RNA silencing that have been developed during this time to obtain plants resistant to viruses and illustrate examples of current applications of RNA silencing to protect crop plants against viral diseases of agronomic relevance. This article is part of a Special Issue entitled: MicroRNAs in viral gene regulation.  相似文献   

18.
Plant diseases are significant threats to modern agriculture and their control remains a challenge to the management of cultivation. Therefore, plant disease management has always been one of the main objectives of any crop improvement programme. To reduce the losses caused by plant diseases, plant biologists have adopted numerous methods to engineer resistant plants. Among them, RNA silencing-based resistance has been a powerful tool that has been used to engineer resistant crops during the last two decades. Engineered plants in particular plants expressing RNA-silencing nucleotides are becoming increasingly important and are likely to provide more effective strategies in future. The advantage of RNAi as a novel gene therapy against fungal, viral and bacterial infection in plants lies in the fact that it regulates gene expression via mRNA degradation, translation repression and chromatin remodelling through small non-coding RNAs. Mechanistically, the silencing processes are guided by processing products of the dsRNA trigger, which are known as small interfering RNAs and microRNAs. The application of tissue-specific or inducible gene silencing, with the use of appropriate promoters to silence several genes simultaneously should enhance researchers’ ability to protect crops against diseases. This reviews a general discussion on the development of RNAi and role of RNAi in plant disease management.  相似文献   

19.
We investigated the effects of salicylic acid (SA) and systemic acquired resistance (SAR) on crown gall disease caused by Agrobacterium tumefaciens. Nicotiana benthamiana plants treated with SA showed decreased susceptibility to Agrobacterium infection. Exogenous application of SA to Agrobacterium cultures decreased its growth, virulence, and attachment to plant cells. Using Agrobacterium whole-genome microarrays, we characterized the direct effects of SA on bacterial gene expression and showed that SA inhibits induction of virulence (vir) genes and the repABC operon, and differentially regulates the expression of many other sets of genes. Using virus-induced gene silencing, we further demonstrate that plant genes involved in SA biosynthesis and signaling are important determinants for Agrobacterium infectivity on plants. Silencing of ICS (isochorismate synthase), NPR1 (nonexpresser of pathogenesis-related gene 1), and SABP2 (SA-binding protein 2) in N. benthamiana enhanced Agrobacterium infection. Moreover, plants treated with benzo-(1,2,3)-thiadiazole-7-carbothioic acid, a potent inducer of SAR, showed reduced disease symptoms. Our data suggest that SA and SAR both play a major role in retarding Agrobacterium infectivity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号