首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
Background: Increase in neuronal Ca2+, activation of hippocampus N-methyl-D-aspartate receptor (NMDAR) and defects in enzymes such as brain cortex microsomal membrane Ca2+-ATPase (MMCA) are thought to play a role in epilepsy. Topiramate (TOP) is a novel drug with broad antiepileptic effect, and its effect on brain cortex MMCA is not known. We investigated effects of TOP on pentylentetrazol (PTZ)-induced MMCA activity and NMDAR subunits in rat brain.

Materials and methods: Thirty-two rats were randomly divided into four equal groups. The first group and second groups were used for the control and PTZ groups, respectively. 50 and 100?mg TOP were administered to rats constituting the third (TOP50) and fourth (TOP100) groups for 7 days, respectively. At the end of 7 days, all groups except the first received a single dose PTZ. Brain and hippocampus samples were taken at 3?hrs after PTZ administration.

Results: The microsomal MMCA activity was lower in the PTZ group than in control although the MMCA activities were higher in the treatment group than in PTZ group. Brain cortex total calcium levels, the hippocampus NMDAR 2A and 2B subunit concentrations were higher in the PTZ group than in control although their concentrations were decreased by TOP50 and TOP100 administration. Total brain cortex calcium and hippocampus NMDAR 2A and 2B subunit concentrations were higher in TOP100 group than in TOP50 group.

Conclusion: The two doses of TOP modulated MMCA activity, total brain cortex calcium and hippocampus NMDAR 2A and 2B subunit concentrations in the epileptic rats.  相似文献   

3.
Calmodulin (CaM) functions depend on interactions with CaM‐binding proteins, regulated by . Induced structural changes influence the affinity, kinetics, and specificities of the interactions. The dynamics of CaM interactions with neurogranin (Ng) and the CaM‐binding region of /calmodulin‐dependent kinase II (CaMKII290−309) have been studied using biophysical methods. These proteins have opposite dependencies for CaM binding. Surface plasmon resonance biosensor analysis confirmed that and CaM interact very rapidly, and with moderate affinity ( ). Calmodulin‐CaMKII290−309 interactions were only detected in the presence of , exhibiting fast kinetics and nanomolar affinity ( ). The CaM–Ng interaction had higher affinity under ‐depleted ( and k −1 = 1.6 × 10−1s−1) than ‐saturated conditions ( ). The IQ motif of Ng (Ng27−50) had similar affinity for CaM as Ng under ‐saturated conditions ( ), but no interaction was seen under ‐depleted conditions. Microscale thermophoresis using fluorescently labeled CaM confirmed the surface plasmon resonance results qualitatively, but estimated lower affinities for the Ng ( ) and CaMKII290−309( ) interactions. Although CaMKII290−309 showed expected interaction characteristics, they may be different for full‐length CaMKII. The data for full‐length Ng, but not Ng27−50, agree with the current model on Ng regulation of /CaM signaling.  相似文献   

4.
Ca2+, in homogenized lacrimal glands, enhanced phosphorylation of several peptides. Phosphorylation of two of these peptides was further stimulated by addition of the Ca2+-binding protein calmodulin and decreased by trifluoperazine, an inhibitor of Ca2+--calmodulin-dependent activity. Thus, Ca2+--calmodulin-dependent protein kinases and their substrates are present in lacrimal gland and could have an important role in lacrimal-gland function.  相似文献   

5.
6.
Recent studies have demonstrated phosphorylation of the cardiac and slow-twitch muscle isoform (SERCA2a) of the sarcoplasmic reticulum (SR) Ca2+-ATPase (at Ser38) by a membrane-associated Ca2+/calmodulin-dependent protein kinase (CaM kinase). Analysis of the functional consequence of Ca2+-ATPase phosphorylation in the native SR membranes, however, is complicated by the concurrent phosphorylation of the SR proteins phospholamban (PLN) which stimulates Ca2+ sequestration by the Ca2+-ATPase, and the ryanodine receptor-Ca2+ release channel (RYR-CRC) which likely augments Ca2+ release from the SR. In the present study, we achieved selective phosphorylation of the Ca2+-ATPase by endogenous CaM kinase in isolated rabbit cardiac SR vesicles utilizing a PLN monoclonal antibody (PLN AB) which inhibits PLN phosphorylation, and the RYR-CRC blocking drug, ruthenium red, which inhibits phosphorylation of RYR-CRC. Analysis of the Ca2+ concentration-dependence of ATP-energized Ca2+ uptake by SR showed that endogenous CaM kinase mediated phosphorylation of the Ca2+-ATPase, in the absence of PLN and/or RYR-CRC phosphorylation, results in a significant increase (approximately 50-70%) in the Vmax of Ca2+ sequestration without any change in the k0.5 for Ca2+ activation of the Ca2+ transport rate. On the other hand, treatment of SR with PLN AB (which mimics the effect of PLN phosphorylation by uncoupling Ca2+-ATPase from PLN) resulted in approximately 2-fold decrease in k0.5 for Ca2+ without any change in Vmax of Ca2+ sequestration. These findings suggest that, besides PLN phosphorylation, direct phosphorylation of the Ca2+-ATPase by SR-associated CaM kinase serves to enhance the speed of cardiac muscle relaxation.  相似文献   

7.
Voltage-dependent N-type Ca(2+) channels, along with the P/Q-type, have a crucial role in controlling the release of neurotransmitters or neuromodulators at presynaptic terminals. However, their role in hippocampus-dependent learning and memory has never been examined. Here, we investigated hippocampus-dependent learning and memory and synaptic plasticity at hippocampal CA3-CA1 synapses in mice deficient for the alpha(1B) subunit of N-type Ca(2+) channels. The mutant mice exhibited impaired learning and memory in the Morris water maze and the social transmission of food preference tasks. In particular, long-term memory was impaired in the mutant mice. Interestingly, among activity-dependent long-lasting synaptic changes, theta burst- or 200-Hz-stimulation-induced long-term potentiation (LTP) was decreased in the mutant, compared with the wild-type mice. This type of LTP is known to require brain-derived neurotrophic factor (BDNF). It was found that both BDNF-induced potentiation of field excitatory postsynaptic potentials and facilitation of the frequency of miniature excitatory postsynaptic currents (mEPSCs) were reduced in the mutant. Taken together, these results demonstrate that N-type Ca(2+) channels are required for hippocampus-dependent learning and memory, and certain forms of LTP.  相似文献   

8.
Proline-rich tyrosine kinase 2 (Pyk2) is activated in neurones following NMDA receptor stimulation via PKC. Pyk2 is involved in hippocampal LTP and acts to potentiate NMDA receptor function. Elevations of intracellular Ca2+ and cAMP levels are key NMDA receptor-dependent triggering events leading to induction of hippocampal LTP. In this study, we compared the ability of A23187 (Ca2+ ionophore) or forskolin (adenylate cyclase activator) to modulate the phosphorylation of Pyk2 in rat hippocampal slices. Using an immunoprecipitation assay, phosphorylated Pyk2 levels were increased following treatment with A23187, levels peaking at around 10 min. Staurosporine, at concentrations inhibiting conventional and novel isoforms of PKC, and chelerythrine, at concentrations inhibiting the atypical PKC isoform PKMxi, were compared for their ability to attenuate the effect of A23187. Exposure of acute hippocampal slices to either chelerythrine or staurosporine completely blocked enhanced phosphorylation of Pyk2 by A23187, suggesting a possible involvement of PKMxi and typical PKCs in Pyk2 activation by Ca2+. In contrast, application of forskolin reduced phosphorylated Pyk2 below basal levels, suggesting that cAMP inhibits Pyk2. These results implicate Ca2+ and multiple forms of PKC in the activation of Pyk2 downstream of NMDA receptors and suggest that cAMP-dependent processes exert a suppressive action on Pyk2.  相似文献   

9.
Using a patch-clamp technique under voltage clamp conditions, we studied the effect of a non-hydrolyzable analog of diadenosine polyphosphates (AppCH2ppAs) on chemoactivated transmembrane currents through NMDA channels (NMDA currents) in isolated pyramidal neurons of the rat hippocampal CA3 zone. In 55.7% of the cases, AppCH2ppAs caused an increase in the peak amplitude of the currents induced by application of aspartate. In 39.5% of the cases, the agent exerted no effect, while in 4.8% these currents were suppressed. When studying the pharmacological effect of an increase in the amplitude of NMDA currents, we found that potentiation of these currents is mediated, first of all, by activation of P2 purinoceptors and is prevented by a blocker of tyrosine kinases, genistein. Receptor-channel NMDA complexes, due to their ability to be blocked by divalent cations, also contribute to the above effect of AppCH2ppA. Based on the data obtained, we conclude that AppCH2ppA influences NMDA receptors via activation of the P2 receptors and subsequent activation of tyrosine kinases; this leads to the modification of receptor-channel NMDA complexes and to the removal of their tonic blocking by zinc ions. Neirofiziologiya/Neurophysiology, Vol. 38, No. 3, pp. 205–210, May–June, 2006.  相似文献   

10.
Accumulating evidence indicates that calpains can reside in or translocate to the cell nucleus, but their functions in this compartment remain poorly understood. Dissociated cultures of cerebellar granule cells (GCs) demonstrate improved long-term survival when their growth medium is supplemented with depolarizing agents that stimulate Ca(2+) influx and activate calmodulin-dependent signaling cascades, notably 20 mm KCl. We previously observed Ca(2+)-dependent down-regulation of Ca(2+)/calmodulin-dependent protein kinase (CaMK) type IV, which was attenuated by calpain inhibitors, in GCs supplemented with 20 mm KCl (Tremper-Wells, B., Mathur, A., Beaman-Hall, C. M., and Vallano, M. L. (2002) J. Neurochem. 81, 314-324). CaMKIV is highly enriched in the nucleus and thought to be critical for improved survival. Here, we demonstrate by immunolocalization/confocal microscopy and subcellular fractionation that the regulatory and catalytic subunits of m-calpain are enriched in GC nuclei, including GCs grown in medium containing 5 mm KCl. Calpain-mediated proteolysis of CaMKIV is selective, as several other nuclear and non-nuclear calpain substrates were not degraded under chronic depolarizing culture conditions. Depolarization and Ca(2+)-dependent down-regulation of CaMKIV were associated with significant alterations in other components of the Ca(2+)-CaMKIV signaling cascade: the ratio of phosphorylated to total cAMP response element-binding protein (a downstream CaMKIV substrate) was reduced by approximately 10-fold, and the amount of CaMK kinase (an upstream activator of CaMKIV) protein and mRNA was significantly reduced. We hypothesize that calpain-mediated CaMKIV proteolysis is an autoregulatory feedback response to sustained activation of a Ca(2+)-CaMKIV signaling pathway, resulting from growth of cultures in medium containing 25 mm KCl. This study establishes nuclear m-calpain as a regulator of CaMKIV and associated signaling molecules under conditions of sustained Ca(2+) influx.  相似文献   

11.
12.
13.
The binding of Ca(2+) to two adjacent Ca(2+)-binding domains, CBD1 and CBD2, regulates ion transport in the Na(+)/Ca(2+) exchanger. As sensors for intracellular Ca(2+), the CBDs form electrostatic switches that induce the conformational changes required to initiate and sustain Na(+)/Ca(2+) exchange. Depending on the presence of a few key residues in the Ca(2+)-binding sites, zero to four Ca(2+) ions can bind with affinities between 0.1 to 20 μm. Importantly, variability in CBD2 as a consequence of alternative splicing modulates not only the number and affinities of the Ca(2+)-binding sites in CBD2 but also the Ca(2+) affinities in CBD1.  相似文献   

14.
The aim of this study was to investigate (a) whether Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) participates in the regulation of plasma membrane Ca2+-ATPase and (b) its possible cross-talk with other kinase-mediated modulatory pathways of the pump. Using isolated innervated membranes of the electrocytes from Electrophorus electricus L., we found that stimulation of endogenous protein kinase A (PKA) strongly phosphorylated membrane-bound CaM kinase II with simultaneous substantial activation of the Ca2+ pump (approximately 2-fold). The addition of cAMP (5-50 pM), forskolin (10 nM), or cholera toxin (10 or 100 nM) stimulated both CaM kinase II phosphorylation and Ca2+-ATPase activity, whereas these activation processes were cancelled by an inhibitor of the PKA alpha-catalytic subunit. When CaM kinase II was blocked by its specific inhibitor KN-93, the Ca2+-ATPase activity decreased to the levels measured in the absence of calmodulin; the unusually high Ca2+ affinity dropped 2-fold; and the PKA-mediated stimulation of Ca2+-ATPase was no longer seen. Hydroxylamine-resistant phosphorylation of the Ca2+-ATPase strongly increased when the PKA pathway was activated, and this phosphorylation was suppressed by inhibition of CaM kinase II. We conclude that CaM kinase II is an intermediate in a complex regulatory network of the electrocyte Ca2+ pump, which also involves calmodulin and PKA.  相似文献   

15.
The Ca2+ transport ATPase (SERCA) of sarcoplasmic reticulum (SR) plays an important role in muscle cytosolic signaling, as it stores Ca2+ in intracellular membrane bound compartments, thereby lowering cytosolic Ca2+ to induce relaxation. The stored Ca2+ is in turn released upon membrane excitation to trigger muscle contraction. SERCA is activated by high affinity binding of cytosolic Ca2+, whereupon ATP is utilized by formation of a phosphoenzyme intermediate, which undergoes protein conformational transitions yielding reduced affinity and vectorial translocation of bound Ca2+. We review here biochemical and biophysical evidence demonstrating that release of bound Ca2+ into the lumen of SR requires Ca2+/H+ exchange at the low affinity Ca2+ sites. Rise of lumenal Ca2+ above its dissociation constant from low affinity sites, or reduction of the H+ concentration by high pH, prevent Ca2+/H+ exchange. Under these conditions Ca2+ release into the lumen of SR is bypassed, and hydrolytic cleavage of phosphoenzyme may yield uncoupled ATPase cycles. We clarify how such Ca2+pump slippage does not occur within the time length of muscle twitches, but under special conditions and in special cells may contribute to thermogenesis.  相似文献   

16.
The densin C-terminal domain can target Ca(2+)/calmodulin-dependent protein kinase IIα (CaMKIIα) in cells. Although the C-terminal domain selectively binds CaMKIIα in vitro, full-length densin associates with CaMKIIα or CaMKIIβ in brain extracts and in transfected HEK293 cells. This interaction requires a second central CaMKII binding site, the densin-IN domain, and an "open" activated CaMKII conformation caused by Ca(2+)/calmodulin binding, autophosphorylation at Thr-286/287, or mutation of Thr-286/287 to Asp. Mutations in the densin-IN domain (L815E) or in the CaMKIIα/β catalytic domain (I205/206K) disrupt the interaction. The amino acid sequence of the densin-IN domain is similar to the CaMKII inhibitor protein, CaMKIIN, and a CaMKIIN peptide competitively blocks CaMKII binding to densin. CaMKII is inhibited by both CaMKIIN and the densin-IN domain, but the inhibition by densin is substrate-selective. Phosphorylation of a model peptide substrate, syntide-2, or of Ser-831 in AMPA receptor GluA1 subunits is fully inhibited by densin. However, CaMKII phosphorylation of Ser-1303 in NMDA receptor GluN2B subunits is not effectively inhibited by densin in vitro or in intact cells. Thus, densin can target multiple CaMKII isoforms to differentially modulate phosphorylation of physiologically relevant downstream targets.  相似文献   

17.
The pattern of protein phosphorylation was found to change in differentiating chick embryonic myoblasts in culture. The extent of phosphorylation of 42-, 50-, and 100-kDa proteins increased while that of a 63-kDa protein declined in extracts of myoblasts that had been cultured for increasing periods. Of these, the increase in phosphorylation of the 100-kDa protein occurred most dramatically in extracts of myoblasts in an early stage of differentiation and was specifically inhibited by trifluoperazine (TFP) and other calmodulin (CaM) antagonists including chlorpromazine and N-(6-aminohexyl)-5-chloro-1-naphthalene-sulfonamide (W-7). Treatment of increasing concentrations of TFP to culture medium also decreased the phosphorylation state of the 100-kDa protein and the degree of myoblast fusion in parallel. In addition, levels of both the kinase activity and the 100-kDa protein but not of CaM appeared to rise in the cells cultured for longer periods. These results suggest that (1) a Ca2+/CaM-dependent protein kinase is responsible for phosphorylation of the 100-kDa protein, (2) the TFP-mediated myoblast fusion block may be associated with the inhibitory effect of the drug against the kinase activity, and (3) the increase in phosphorylation state of the 100-kDa protein during myogenic differentiation is due to the rise in levels of the kinase and its substrate.  相似文献   

18.
Phototransduction is a canonical G protein-mediated cascade of retinal photoreceptor cells that transforms photons into neural responses. Phosducin (Pd) is a Gbetagamma-binding protein that is highly expressed in photoreceptors. Pd is phosphorylated in dark-adapted retina and is dephosphorylated in response to light. Dephosphorylated Pd binds Gbetagamma with high affinity and inhibits the interaction of Gbetagamma with Galpha or other effectors, whereas phosphorylated Pd does not. These results have led to the hypothesis that Pd down-regulates the light response. Consequently, it is important to understand the mechanisms of regulation of Pd phosphorylation. We have previously shown that phosphorylation of Pd by cAMP-dependent protein kinase moderately inhibits its association with Gbetagamma. In this study, we report that Pd was rapidly phosphorylated by Ca(2+)/calmodulin-dependent kinase II, resulting in 100-fold greater inhibition of Gbetagamma binding than cAMP-dependent protein kinase phosphorylation. Furthermore, Pd phosphorylation by Ca(2+)/calmodulin-dependent kinase II at Ser-54 and Ser-73 led to binding of the phosphoserine-binding protein 14-3-3. Importantly, in vivo decreases in Ca(2+) concentration blocked the interaction of Pd with 14-3-3, indicating that Ca(2+) controls the phosphorylation state of Ser-54 and Ser-73 in vivo. These results are consistent with a role for Pd in Ca(2+)-dependent light adaptation processes in photoreceptor cells and also suggest other possible physiological functions.  相似文献   

19.
Simultaneous somatic patch-pipette recording of a single astrocyte to evoke voltage-gated calcium currents, and Ca(2+) imaging, were used to study the spatial and temporal profiles of depolarization-induced changes in intracellular Ca(2+) ([Ca(2+)](i)) in the processes of cultured rat cortical astrocytes existing as pairs. Transient Ca(2+) changes locked to depolarization were observed as microdomains in the processes of the astrocyte pairs, and the responses were more pronounced in the adjoining astrocyte. Considering the functional significance of higher concentrations of glutamate observed in certain pathological conditions, Ca(2+) transients were recorded following pretreatment of cells with glutamate (500 microM for 20 min). This showed distance-dependent incremental scaling and attenuation in the presence of the metabotropic glutamate receptor (mGluR) antagonist, alpha-methyl(4-carboxy-phenyl) glycine (MCPG). Estimation of local Ca(2+) diffusion coefficients in the astrocytic processes indicated higher values in the adjoining astrocyte of the glutamate pretreated group. Intracellular heparin introduced into the depolarized astrocyte did not affect the Ca(2+) transients in the heparin-loaded astrocyte but attenuated the [Ca(2+)](i) responses in the adjoining astrocyte, suggesting that inositol 1,4,5 triphosphate (IP(3)) may be the transfer signal. The uncoupling agent, 1-octanol, attenuated the [Ca(2+)](i) responses in both the control and glutamate pretreated astrocytes, indicating the role of gap junctional communication. Our studies indicate that individual astrocytes have distinct functional domains, and that the glutamate-induced alterations in Ca(2+) signaling involve a sequence of intra- and intercellular steps in which phospholipase C (PLC), IP(3), internal Ca(2+) stores, VGCC and gap junction channels appear to play an important role.  相似文献   

20.
The mechanism of action of Ca2+/calmodulin on phospholipid synthesis in Microsporum gypseum has been studied. These second messengers were observed to mediate their function through phosphorylation mechanism as altered protein kinase activity was seen in calcium/trifluoperazine (calmodulin antagonist) grown cells. The activity of protein kinase was dependent on calcium (200 m) and calmodulin (1 m). In vitro studies of phosphorylation and dephosphorylation in relation to phospholipid synthesis in Microsporum gypseum have been carried out. Addition of KN-62 (a specific inhibitor of Ca2+/calmodulin-dependent protein kinases) and polyclonal antibodies raised against purified Ca2+/calmodulin-kinase (CaMPK) of M. gypseum in the cell extract, leads to the inhibition in the incorporation of labelled acetate into total phospholipids in this fungus. These results suggest a possible involvement of Ca2+/calmodulin via Ca2+/calmodulin-dependent phosphorylation in phospholipid synthesis in M. gypseum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号